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The system is representing hierarchical multilevel approach of clustering and explores dynamic modeling in 

hierarchical clustering. Presented approach operates on a k-nn graph and hyper graph in which nodes represent 
data items, and weighted edges represent similarities among the data items. Presented hierarchical multilevel algo-
rithm consists of several stages: building the graph, coarsening, partitioning, uncoarsening. Exploring of different 
combinations of algorithms on different stages for different data sets is the main goal of the work. 
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Introduction 

The goal of data clustering, also known as cluster 
analysis, is to discover the natural grouping(s) of a set 
of patterns, points, or objects [1]. Webster defines clus-
ter analysis as “a statistical classification technique for 
discovering whether the individuals of a population fall 
into different groups by making quantitative compari-
sons of multiple characteristics” [2]. Cluster analysis 
has been widely used in numerous applications, includ-
ing pattern recognition, data analysis, image processing 
and market research [3]. 

Data clustering is under vigorous development. 
Contributing areas of research include data mining, sta-
tistics, machine learning, spatial database technology, 
biology and marketing. Owing to the huge amounts of 
data collected in databases, cluster analysis has recently 
become a highly active topic in data mining research [4]. 

The purpose of the work is research of hierarchical 
multilevel algorithms, investigation of different ap-
proaches for different stages of the algorithms, compari-
son of results of different combinations of the ap-
proaches for certain data. Proposed approach is based 
on the chameleon algorithm. For this research is neces-
sary to collect and analyze methods of graph building, 
coarsening, partitioning and uncoarsening algorithms. 

Basis of the work 

Hierarchical clustering is an iterative procedure in 
which n data points are partitioned into groups which 
may vary from a single cluster containing all n points, to 
n clusters each containing a single point.  

Presented approach is based on the Chameleon al-
gorithm. Chameleon finds the clusters in the data set by 
using a two-phase algorithm. During the first phase, 
Chameleon uses a graph-partitioning algorithm to clus-
ter the data items into several relatively small sub-
clusters. During the second phase, it uses an algorithm 
to find the genuine clusters by repeatedly combining 
these subclusters. Chameleon represents its objects 

based on the commonly used k-nearest neighbor graph 
approach. This graph representation of the data set al-
lows CHAMELEON to scale to large data sets. Figure 1 
provides an overview of the overall approach used by 
CHAMELEON to find the clusters in a data set [5]. 

On the basis of the CHAMELEON algorithm pre-
sented algorithms will contain 4 main steps: 

1. Graph building. Graph will be build by symmet-
rical k-nn algorithm and asymmetrical k-nn algorithm. 
For both algorithms different types of distances will be 
used: Euclidean distance, Manhattan distance, Min-
kowski distance and Squared Euclidean distance. 

2. Graph coarsening. This stage will be implemented 
by next algorithms: Random Matching, Heavy Edge 
Matching, Light Edge Matching, Heavy Clique Matching, 
Heavy-triangle matching, Heaviest Schema Matching. 

3. Graph partitioning. This phase will be presented 
by: Multilevel Recursive Bisection; Kernighan-Lin Algo-
rithm (KL) – Fiduccia-Mattheyses Algorithm; Graph 
Growing Algorithm (GGP); Greedy Graph Growing Al-
gorithm (GGGP); Multilevel k-way Partitioning; Coordi-
nate Nested Dissection(CND); Recursive Inertial Bisec-
tion(RIB); Space-filling Curve Techniques; Sphere-
cutting Approach; Levelized Nested Dissection (LND). 

4. Graph uncoarsening. This stage will be made by 
two ways: Kernighan-Lin Refinement - Fiduccia-
Mattheyses Algorithm and Boundary Kernighan-Lin 
Refinement. 

Description of the presented system 

At different stages of Chameleon algorithm differ-
ent approaches can be used. For the constructing space 
graph phase symmetric and asymmetric k-NN algo-
rithms can be used. Different types of distances can be 
used while graph building. All other phases also can by 
done by different methods. Such as: 

– euclidean distance: 
n

2
i j ik jk

k 1
d(X ,X ) (x x )

=
= −∑ ; 
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– manhattan distance:   
n

i j ik jk
k 1

d(X , X ) x x
=

= −∑ ; 

– minkowski distance: 
1/ppn

i j ik jk
k 1

d(X ,X ) x x
=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∑ ; 

– squared Euclidean distance: 

n
2

i j ik jk
k 1

d(X ,X ) (x x )
=

= −∑ . 

The next phase of the algorithm is the coarsening 
phase. The goal of the coarsening phase is to reduce the 
size of a graph while preserving those of its properties 
that are essential to finding a good partition. The origi-
nal graph is regarded as a weighted graph, with a unit 
weight assigned to each edge and each node [6]. At the 
coarsening phase next algorithms can be used. 

 
Fig.1. Overall framework CHAMELEON. 

 
Random Matching (RM) A maximal matching can 

be generated efficiently using a randomized algorithm. 
The vertices are visited in random order. If a vertex u 
has not been matched yet, then we randomly select one 
of its unmatched adjacent vertices. If such a vertex v 
exists, we include the edge (u; v) in the matching and 
mark vertices u and v as being matched. If there is no 
unmatched adjacent vertex v, then vertex u. 

Heavy Edge Matching (HEM) Random matching is 
a simple and efficient method to compute a maximal 
matching and minimizes the number of coarsening levels 
in a greedy fashion. However, our overall goal is to find a 
partition that minimizes the edge-cut. Light Edge Match-
ing (LEM) Instead of minimizing the total edge weight of 
the coarser graph, one might try to maximize it. 

Heavy Clique Matching (HCM) HCM is very simi-
lar to the HEM scheme. The only difference is that HEM 
matches vertices that are only connected with a heavy 
edge irrespective of the contracted edge-weight of the 
vertices, whereas HCM matches a pair of vertices if they 
are both connected using a heavy edge and if each of 
these two vertices has high contracted edge-weight [7]. 

Heavy-triangle matching (HTM) coalesces three 
nodes at a time by picking an unmatched node at ran-
dom and matching it with two of its neighbours such 
that the sum of the weights of the three edges connect-
ing the three nodes is maximized over all pairs of 
neighbours of the selected node. A nonexistent edge 
between the two neighbours is regarded as an edge of 
weight zero [8]. 

Heaviest Schema Matching (HSM). In HSM vertexes 
are no longer visited in random order. The edges are sorted 
by their weight and the vertices with the maximum weight 
edge are selected to do the matching first [6]. 

The next phase is partitioning. At this phase of a mul-
tilevel algorithm computes a high-quality bisection (i.e., 
small edge-cut) mP   of the coarse graph  m m mG (V ,E )=  
such that each part contains roughly half of the vertex 
weight of the original graph. Since during coarsening, the 

weights of the vertices and edges of the coarser graph were 
set to reflect the weights of the vertices and edges of the 
finer graph, mG  contains sufficient information to intelli-
gently enforce the balanced partition and the small edge-
cut requirements. A partition of mG  can be obtained using 
various algorithms such as [9]: 

Multilevel Recursive Bisection; 
Kernighan-Lin Algorithm (KL) – Fiduccia-

Mattheyses Algorithm; 
Graph Growing Algorithm (GGP); 
Greedy Graph Growing Algorithm (GGGP); 
Multilevel k-way Partitioning; 
Coordinate Nested Dissection(CND); 
Recursive Inertial Bisection(RIB); 
Space-filling Curve Techniques; 
Sphere-cutting Approach; 
Levelized Nested Dissection (LND). 
After the partitioning graph is refining (uncoarsen-

ing). During the uncoarsening phase, the partition mP  
of the coarser graph mG  is projected back to the origi-
nal graph, by going through the graphs 

m 1 m 2 1G ;G ;...;G− − . Next algorithms can be used for 
refinement [7]: Kernighan-Lin Refinement – Fiduccia-
Mattheyses Algorithm; Boundary Kernighan-Lin Re-
finement. 

Experimental results $ Graph building 

As implementation of the first phase of the algo-
rithm graph can be presented. Experiments for two data 
sets will be presented.  

At the Figure 2 asymmetrical (k = 4) and symmet-
rical (k = 7) k-NN graphs built by the different distances 
for disc-in- disc data set are presented. Data set contains 
2000 elements. At the Figure 3 asymmetrical and sym-
metrical k-NN graphs (k = 3) built by the different dis-
tances are for optics-word data set presented. Data set 
contains 86 elements. Processing time for building 
graphs are presented in the table 1. 
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Fig. 2. Asymmetrical k-NN graphs (left), symmetrical k-NN graphs (right) for disc-in-disc data set 

 

 
Fig. 3. Asymmetrical k-NN graphs, symmetrical k-NN 

graphs for “optics” data set 
 

Table 1 
Processing time – Buiding the graphs 

 Disc-in-disc data set Optics data set 

 Symmetri
cal k-nn 

Assymetric
al k-knn 

Symmetric
al k-nn 

Assymetric
al k-knn 

Euclidean 
distance 34.901 4.363 0.0156251 0.0312502

Manhattan 
distance 34.587 4.667 0.0000000 0.0312502

Minkowski 
distance(3) 34.68 4.431 0.0000000 0.0312502

Squared 
Euclidean 
distance 

29.631 4.074 0.0000000 0.0156251

 

Experimental results $ Coarsening 

As implementation of the second phase of the al-
gorithm graph can be presented. Experiments for two 
data sets will be presented. First experiment for optics 
data set will be presented. At the Figure 4 graphs built 
by Euclidean distance are presented.  

At the Figure 5 graphs built by Manhattan distance 
are presented. At the Figure 6 graphs built by Min-
kowski (p = 3) distance are presented. At the Figure 7 
graphs built by Squared Euclidean distance are pre-
sented. Processing time for coarsening algorithms is 
presented in table 2. 

 

 
Fig. 4. Euclidean distance 

 

 
Fig. 5. Manhattan distance 
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Fig. 6. Minkowski (p = 3) distance 

 

 
Fig. 7. Squared Euclidean distance 

Table 2 
Coarsening processing time – optics data set 

 Squared Euclidean distance Minkowski (p=3) distance Manhattan distance Euclidian distance 
 Sym Asym Sym Asym Sym Asym Sym Asym 

RM 0,0000000 0,001 0,001 0,0000000 0,0000000 0,001 0,01 0,003 
HEM 0,0000000 0,0000000 0,001 0,001 0,0000000 0,001 0,0000000 0,002 
LEM 0,0000000 0,001 0,001 0,001 0,001 0,001 0,0000000 0,002 
HCM 0,0000000 0,001 0,001 0,001 0,001 0,002 0,0000000 0,003 
HTM 0,001 0,001 0,001 0,002 0,001 0,001 0,0000000 0,004 
HSM 0,004 0,009 0,005 0,008 0,005 0,008 0,004 0,008 

 
Next the experiment for disc-in-disc data set will 

be presented.  
At the Figure 8 graphs built by Euclidean distance 

are presented. At the Figure 9 graphs built by Manhattan 
distance are presented. At the Figure 10 graphs built by 

Minkowski (p = 3) distance are presented. At the Figure 
11 graphs built by Squared Euclidean distance are pre-
sented. 

Processing time for coarsening algorithms is pre-
sented in table 3. 

 

 
Fig. 8. Euclidean distance 
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Fig. 9. Manhattan distance 

 

 
Fig. 10. Minkowski (p = 3) distance 

Table 3 
Processing time – disc 

 Squared Euclidean 
distance 

Minkowski (p=3) 
distance Manhattan distance Euclidian distance 

 Sym Asym Sym Asym Sym Asym Sym Asym 
RM 0.749 0.545 0.781 0.558 0.814 0.565 0.735 0.542 

HEM 0.661 0.485 0.65 0.469 0.644 0.531 0.64 0.471 
LEM 0.799 0.588 0.792 0.584 0.804 0.603 0.779 0.592 
HCM 1.623 1.162 1.579 1.128 1.568 1.156 1.604 1.143 
HTM 1.672 1.134 1.685 1.059 1.614 1.123 1.65 1.091 
HSM 4:23.915 3:03.808 3:42.401 3:4.689 4:36.834 3:08.674 3:46.671 3.08.096 
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Fig. 11. Squared Euclidean distance 

 
Conclusion and Direction  

for Future Research 

In presented work method for effectiveness re-
search of dynamic clustering of linearly inseparable 
plagued experimental data is presented. All steps of 
hierarchical multilevel algorithm are shown up.  

Algorithms possible for using on each phase are 
described. The goal of the whole research is to analyze 
different combinations of algorithms on different 
phases. In current work comparison of graph building 
algorisms and coarsening algorithms were done. In fur-
ther work comparison of partitioning and uncoarsening 
algorisms will be done, analysis and estimation of 
whole schema work will be presented. 
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dnqkPdfemm“ dhm`lP)mnЇ jk`qŠephg`0PЇ  

kPmPimnmeondPk|mhu g`xrlkemhu ejqoephlemŠ`k|mhu d`mhu 

Н.С. Лесна, Т.Б. Шатовська, А.В. Ляховець  
Розглядається ієрархічний багаторівневий алгоритм, що складається з кількох фаз: побудова графу, огрублення, 

поділ та. об'єднання, на кожній з яких можуть бути використані різні підходи та алгоритми. 
Ключові слова: кластерний аналіз, ієрархічне групування, огрублення, поділ, неогрублення, Chameleon. 

 
hqqkednb`mhe dhm`lh)eqjni jk`qŠephg`0hh  

khmeimn mep`gdekhl{u g`xrlkemm{u }jqoephlemŠ`k|m{u d`mm{u 

Н.С. Лесная, Т.Б. Шатовская, А.В. Ляховец  
Рассматривается иерархический многоуровневый алгоритм, состоящий из нестольких фаз: построение графа, огруб-

ление, разделение и восстановление, на каждой из которых могут быть использованны различные подходы и алгоритмы. 
Ключевые слова: кластерный анализ, иерархическое группирование, огрубление, разделение, неогрубление, Chameleon. 


