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RESEARCH OF DYNAMIC CLUSTERING ON LINEARLY INSEPARABLE
PLAGUED EXPERIMENTAL DATA

The system is representing hierarchical multilevel approach of clustering and explores dynamic modeling in
hierarchical clustering. Presented approach operates on a k-nn graph and hyper graph in which nodes represent
data items, and weighted edges represent similarities among the data items. Presented hierarchical multilevel algo-
rithm consists of several stages: building the graph, coarsening, partitioning, uncoarsening. Exploring of different
combinations of algorithms on different stages for different data sets is the main goal of the work.
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Introduction

The goal of data clustering, also known as cluster
analysis, is to discover the natural grouping(s) of a set
of patterns, points, or objects [1]. Webster defines clus-
ter analysis as “a statistical classification technique for
discovering whether the individuals of a population fall
into different groups by making quantitative compari-
sons of multiple characteristics” [2]. Cluster analysis
has been widely used in numerous applications, includ-
ing pattern recognition, data analysis, image processing
and market research [3].

Data clustering is under vigorous development.
Contributing areas of research include data mining, sta-
tistics, machine learning, spatial database technology,
biology and marketing. Owing to the huge amounts of
data collected in databases, cluster analysis has recently
become a highly active topic in data mining research [4].

The purpose of the work is research of hierarchical
multilevel algorithms, investigation of different ap-
proaches for different stages of the algorithms, compari-
son of results of different combinations of the ap-
proaches for certain data. Proposed approach is based
on the chameleon algorithm. For this research is neces-
sary to collect and analyze methods of graph building,
coarsening, partitioning and uncoarsening algorithms.

Basis of the work

Hierarchical clustering is an iterative procedure in
which n data points are partitioned into groups which
may vary from a single cluster containing all n points, to
n clusters each containing a single point.

Presented approach is based on the Chameleon al-
gorithm. Chameleon finds the clusters in the data set by
using a two-phase algorithm. During the first phase,
Chameleon uses a graph-partitioning algorithm to clus-
ter the data items into several relatively small sub-
clusters. During the second phase, it uses an algorithm
to find the genuine clusters by repeatedly combining
these subclusters. Chameleon represents its objects

based on the commonly used k-nearest neighbor graph
approach. This graph representation of the data set al-
lows CHAMELEON to scale to large data sets. Figure 1
provides an overview of the overall approach used by
CHAMELEON to find the clusters in a data set [5].

On the basis of the CHAMELEON algorithm pre-
sented algorithms will contain 4 main steps:

1. Graph building. Graph will be build by symmet-
rical k-nn algorithm and asymmetrical k-nn algorithm.
For both algorithms different types of distances will be
used: Euclidean distance, Manhattan distance, Min-
kowski distance and Squared Euclidean distance.

2. Graph coarsening. This stage will be implemented
by next algorithms: Random Matching, Heavy Edge
Matching, Light Edge Matching, Heavy Clique Matching,
Heavy-triangle matching, Heaviest Schema Matching.

3. Graph partitioning. This phase will be presented
by: Multilevel Recursive Bisection; Kernighan-Lin Algo-
rithm (KL) — Fiduccia-Mattheyses Algorithm; Graph
Growing Algorithm (GGP); Greedy Graph Growing Al-
gorithm (GGGP); Multilevel k-way Partitioning; Coordi-
nate Nested Dissection(CND); Recursive Inertial Bisec-
tion(RIB); Space-filling Curve Techniques; Sphere-
cutting Approach; Levelized Nested Dissection (LND).

4. Graph uncoarsening. This stage will be made by
two ways: Kernighan-Lin Refinement - Fiduccia-
Mattheyses Algorithm and Boundary Kernighan-Lin
Refinement.

Description of the presented system

At different stages of Chameleon algorithm differ-
ent approaches can be used. For the constructing space
graph phase symmetric and asymmetric k-NN algo-
rithms can be used. Different types of distances can be
used while graph building. All other phases also can by
done by different methods. Such as:

— euclidean distance:

d(X;, X;) =1’Z(Xik —x)°
k=1
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— manhattan distance:

n
dXp, X)) =Y
k=1

Xik—xjk|;

— minkowski distance:
1/p

n p
d(X;, X;) = Z|Xik_xjk| ;
k=1

— squared Euclidean distance:

n
d(Xi, X)) = ) (xik _Xjk)2
k=1

The next phase of the algorithm is the coarsening
phase. The goal of the coarsening phase is to reduce the
size of a graph while preserving those of its properties
that are essential to finding a good partition. The origi-
nal graph is regarded as a weighted graph, with a unit
weight assigned to each edge and each node [6]. At the
coarsening phase next algorithms can be used.

Fimal Clusters

Fig.1. Overall framework CHAMELEON.

Random Matching (RM) A maximal matching can
be generated efficiently using a randomized algorithm.
The vertices are visited in random order. If a vertex u
has not been matched yet, then we randomly select one
of its unmatched adjacent vertices. If such a vertex v
exists, we include the edge (u; v) in the matching and
mark vertices u and v as being matched. If there is no
unmatched adjacent vertex v, then vertex u.

Heavy Edge Matching (HEM) Random matching is
a simple and efficient method to compute a maximal
matching and minimizes the number of coarsening levels
in a greedy fashion. However, our overall goal is to find a
partition that minimizes the edge-cut. Light Edge Match-
ing (LEM) Instead of minimizing the total edge weight of
the coarser graph, one might try to maximize it.

Heavy Clique Matching (HCM) HCM is very simi-
lar to the HEM scheme. The only difference is that HEM
matches vertices that are only connected with a heavy
edge irrespective of the contracted edge-weight of the
vertices, whereas HCM matches a pair of vertices if they
are both connected using a heavy edge and if each of
these two vertices has high contracted edge-weight [7].

Heavy-triangle matching (HTM) coalesces three
nodes at a time by picking an unmatched node at ran-
dom and matching it with two of its neighbours such
that the sum of the weights of the three edges connect-
ing the three nodes is maximized over all pairs of
neighbours of the selected node. A nonexistent edge
between the two neighbours is regarded as an edge of
weight zero [8].

Heaviest Schema Matching (HSM). In HSM vertexes
are no longer visited in random order. The edges are sorted
by their weight and the vertices with the maximum weight
edge are selected to do the matching first [6].

The next phase is partitioning. At this phase of a mul-
tilevel algorithm computes a high-quality bisection (i.e.,
small edge-cut) P, of the coarse graph G, =(V,,Er)
such that each part contains roughly half of the vertex
weight of the original graph. Since during coarsening, the

weights of the vertices and edges of the coarser graph were
set to reflect the weights of the vertices and edges of the
finer graph, G, contains sufficient information to intelli-

gently enforce the balanced partition and the small edge-
cut requirements. A partition of G,,, can be obtained using

various algorithms such as [9]:

Multilevel Recursive Bisection;

Kernighan-Lin ~ Algorithm (KL) -
Mattheyses Algorithm;

Graph Growing Algorithm (GGP);

Greedy Graph Growing Algorithm (GGGP);

Multilevel k-way Partitioning;

Coordinate Nested Dissection(CND);

Recursive Inertial Bisection(RIB);

Space-filling Curve Techniques;

Sphere-cutting Approach;

Levelized Nested Dissection (LND).

After the partitioning graph is refining (uncoarsen-
ing). During the uncoarsening phase, the partition P,

Fiduccia-

of the coarser graph G, is projected back to the origi-
nal graph, by going through the graphs
Gn-1Gm_2;--:Gy. Next algorithms can be used for

refinement [7]: Kernighan-Lin Refinement — Fiduccia-
Mattheyses Algorithm; Boundary Kernighan-Lin Re-
finement.

Experimental results — Graph building

As implementation of the first phase of the algo-
rithm graph can be presented. Experiments for two data
sets will be presented.

At the Figure 2 asymmetrical (k = 4) and symmet-
rical (k = 7) k-NN graphs built by the different distances
for disc-in- disc data set are presented. Data set contains
2000 elements. At the Figure 3 asymmetrical and sym-
metrical k-NN graphs (k = 3) built by the different dis-
tances are for optics-word data set presented. Data set
contains 86 elements. Processing time for building
graphs are presented in the table 1.
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Fig. 2. Asymmetrical k-NN graphs (left), symmetrical k-NN graphs (right) for disc-in-disc data set
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Fig. 3. Asymmetrical k-NN graphs, symmetrical k-NN
graphs for “optics” data set

Experimental results — Coarsening

As implementation of the second phase of the al-
gorithm graph can be presented. Experiments for two
data sets will be presented. First experiment for optics
data set will be presented. At the Figure 4 graphs built
by Euclidean distance are presented.

Asymmetrical k-nn

OPTTCAUPT TCE

Random Matching Heawy Cliqgue Matching

QP TICHARPT I

Heavy EdgelMatching Heavy Triangle Matching

OPTICH AP (8

Light Edge Matching Heaviest Schema Matching

Table 1
Processing time — Buiding the graphs
Disc-in-disc data set Optics data set
Symmetri | Assymetric | Symmetric | Assymetric
cal k-nn | al k-knn al k-nn al k-knn
Euclidean 150 501 | 4363 |0.0156251 | 0.0312502
distance
Manhattan |5, 57 1 4667 [0.0000000 | 0.0312502
distance
Minkowski | 5 6o | 4431 [0.0000000 | 0.0312502
distance(3)
Squared
Euclidean 29.631 4.074 0.0000000 | 0.0156251
distance

At the Figure 5 graphs built by Manhattan distance
are presented. At the Figure 6 graphs built by Min-
kowski (p = 3) distance are presented. At the Figure 7
graphs built by Squared Euclidean distance are pre-
sented. Processing time for coarsening algorithms is

presented in table 2.
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Fig. 4. Euclidean distance
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Fig. 5. Manhattan distance
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Fig. 7. Squared Euclidean distance

Coarsening processin,

Table 2
g time — optics data set

Squared Euclidean distance Minkowski (p=3) distance Manbhattan distance Euclidian distance

Sym Asym Sym Asym Sym Asym Sym Asym

RM 0,0000000 0,001 0,001 0,0000000 0,0000000 0,001 0,01 0,003

HEM 0,0000000 0,0000000 0,001 0,001 0,0000000 0,001 0,0000000 0,002
LEM 0,0000000 0,001 0,001 0,001 0,001 0,001 0,0000000 0,002
HCM 0,0000000 0,001 0,001 0,001 0,001 0,002 0,0000000 0,003
HTM 0,001 0,001 0,001 0,002 0,001 0,001 0,0000000 0,004
HSM 0,004 0,009 0,005 0,008 0,005 0,008 0,004 0,008

Next the experiment for disc-in-disc data set will

be presented.

At the Figure 8 graphs built by Euclidean distance
are presented. At the Figure 9 graphs built by Manhattan
distance are presented. At the Figure 10 graphs built by

Asymmetrical k-nn

Minkowski (p = 3) distance are presented. At the Figure
11 graphs built by Squared Euclidean distance are pre-
sented.

Processing time for coarsening algorithms is pre-
sented in table 3.

Symmetrical k-nn

Heavy Edgetdatching Heawy Triangle Matching
¥ o o
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Fig. 8. Euclidean distance
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Fig. 9. Manhattan distance
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Fig. 10. Minkowski (p = 3) distance

Table 3
Processing time — disc
Square'd Euclidean Mmk(?WSkl (p=3) Manbhattan distance Euclidian distance
distance distance

Sym Asym Sym Asym Sym Asym Sym Asym

RM 0.749 0.545 0.781 0.558 0.814 0.565 0.735 0.542

HEM 0.661 0.485 0.65 0.469 0.644 0.531 0.64 0.471

LEM 0.799 0.588 0.792 0.584 0.804 0.603 0.779 0.592

HCM 1.623 1.162 1.579 1.128 1.568 1.156 1.604 1.143

HTM 1.672 1.134 1.685 1.059 1.614 1.123 1.65 1.091
HSM 4:23.915 | 3:03.808 | 3:42.401 3:4.689 | 4:36.834 3:08.674 | 3:46.671 3.08.096
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Fig. 11. Squared Euclidean distance

Conclusion and Direction
for Future Research

In presented work method for effectiveness re-
search of dynamic clustering of linearly inseparable
plagued experimental data is presented. All steps of
hierarchical multilevel algorithm are shown up.

Algorithms possible for using on each phase are
described. The goal of the whole research is to analyze
different combinations of algorithms on different
phases. In current work comparison of graph building
algorisms and coarsening algorithms were done. In fur-
ther work comparison of partitioning and uncoarsening
algorisms will be done, analysis and estimation of
whole schema work will be presented.
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Haoitwna 0o pedxonezii 19.04.2010

PenensenT: kana. TexH. Hayk, npod. b.B. Ilamura, Xapkis-
ChKHIi HAllIOHAJIBHUI YHIBEPCUTET PaIioeIeKTPOHIKH, XapKiB.

} JAOCHIAXEHHSA AMHAMIYHOI KNACTEPHU3ALLIT
JIHIMHOHENOAbHUX 3ALLYMITEHMX EKCMEPMMEHTAJIbBHUX AAHMX

H.C. Jlecna, T.b. lllatoBcrka, A.B. JIaxoBeup

Posenaoaemocs iepapxiunuti 6azamopisHesuil aneopumam,

WO CKIA0AEMbCA 3 Kitbkox ¢haz: nobyodosa epagy, oepyodnenns,

nooin ma. 00'€OHAHHL, HA KOJCHIL 3 AKUX MOJICYMb OYMU GUKOPUCIAHT PI3HT RIOX00U MA An2opUummu.
Kniouosi cnosa: knacmepnuii ananis, icpapxiune 2pynyganus, oepyoaenns, nooin, neoepyonenns, Chameleon.

. MCCNEQOBAHUE AMHAMMYECKOW KNACTEPU3ALIMM
JIMHEMHO HEPA3AEJIMMbIX 3ALUYMIIEHHBIX SKCNMEPUMEHTAJIbHbIX JAHHbIX

H.C. Jlecuas, T.b. IllaTtoBckas, A.B. JIsxoBer

Paccmampusaemes uepapxuueckuii MHO20YPOBHEBbILL ANCOPUMM, COCIOSIULL U3 HECMOMLKUX ¢haz: nocmpoenue epaga, oepyo-
Jlenue, pazoeneHue u 60CCMAaHoGIeHUe, Ha KadxicoOoll U3 KOMOPbIX MO2ym Oblmb UCNOIb306AHHbL PA3IUYHbIE NOOX00bL U ANCOPUMMBL.
Knrwoueswie cnosa: knacmepHulii anaiu3s, uepapxuieckoe 2pynnuposarue, oepyoienue, pazoenetue, Heoepyonenue, Chameleon.
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