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This paper aims to compare the fitting performance of term structure estimation for Taiwan Government Bonds market, 
which is considered as an illiquid bond market with a low trading volume, based on the Nelson and Siegel, Extended 
Nelson-Siegel Model and Nelson-Siegel-Svensson Model (see Nelson and Sigel, 1987; Bliss, 1996; Svensson, 1994). 
The empirical results indicate that the fitting performance in accuracy for Nelson-Siegel-Svensson Model is better than 
that of Extended Nelson-Siegel Model, and the Extended Nelson-Siegel Model is better than that of Nelson-Siegel 
Model. It means that adding more parameters will obtain a better capability in describing the shape of the term 
structure. Also, compared with the case of which the liquidity constraint is not taken into consideration, these three 
models will have a better fitting performance if the liquidity constraint is considered. 
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Introduction• 

The relationship between the yields of default-free 
zero coupon bonds and their length to maturity is de-
fined as the term structure of interest rates and is 
shown pictorially in the yield curve. This relation can 
be used for risk management and has an important role 
in pricing fixed-income securities and interest rate 
derivatives, as well as other financial assets. Because 
of its numerous uses, an accurate estimate of the term 
structure has constituted a major question in the em-
pirical literature in economics and finance. 

Many alternative estimation methods for yield 
curves appeared in the literature over the years. 
Generally speaking, there are two distinct ap-
proaches to estimate the term structure of interest 
rates: the equilibrium models and the statistical 
techniques. The first approach is formalized by de-
fining state variables characterizing the state of the 
economy (relevant to the determination of the term 
structure) which are driven by these random proc-
esses and are related in some way to the prices of 
bonds. It then uses no-arbitrage arguments to infer 
the dynamics of the term structure. Examples of this 
approach include Vasicek (1977), Dothan (1978), 
Brennan and Schwartz (1979), Cox Ingersoll and 
Ross (CIR, 1985) and Duffie and Kan (1996). Un-
fortunately, in terms of the expedient assumptions 
about the nature of the random process driving the 
interest rates, the yield curves derived by those 
models have a specific functional form dependent 
only on a few parameters, and usually the observed 
yield curves exhibit more varied shapes than those 
justified by the equilibrium models.  
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In contrast to the equilibrium models, the statistical 
techniques focusing on obtaining a continuing yield 
curve from cross-sectional coupon bond data based on 
curve fitting techniques are able to describe a richer 
variety of yield patterns in reality. The resulting term 
structure estimated from the statistical techniques can 
be directly put into interest rate models, such as the Ho 
and Lee (1986), the Heath et al. (1992) and Hull and 
White (1990) models, for pricing interest rate contin-
gent claims. Since a coupon bond can be considered as 
a portfolio of discount bonds with maturities dates 
consistent with the coupon dates, the discount bond 
prices thus can be extracted from actual coupon bond 
prices by statistical techniques1. These methods can be 
broadly divided into two categories: the splines and the 
parsimonious function forms (see Alper et al., 2004). 
Spline-based models were first proposed by 
McCulloch (1971, 1975) who used various piecewise 
polynomial splines to estimate the discount function. 
He found that the discount function could be fitted 
very well by cubic or higher order splines and the es-
timated forward rates are a smooth function. Schaefer 
(1981) uses a set of Bernstein polynomials to appro-
priate the term structure. Even though polynomial 
splines constitute a very flexible family of curves, they 
do not constrain the discount function to be non-
increasing. Vasicek and Fong (1982) use a third-order 
exponential spline to estimate the discount function 
and claim such models are superior to polynomial 
splines models. However, Shea (1985) points out that 
there is no evidence to support that exponential splines 

                                                      
1 Once the discount function, )(tP , is defined, the spot interest rate 
(the pure discount bond yield) can be computed by: 
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produce more stable estimates of the term structure 
than polynomial splines. Later, Mastronikola (1991) 
develops a more complex cubic splines and concludes 
the model’s fit is superior to that of its predecessor. In 
terms of previous considerations, an optimal approxi-
mation for a discount function can be found as a linear 
combination of elements of the basis which would be 
constructed by the B-spline function. In practice, the 
B-spline function has been successfully used by 
Steeley (1991), the UK Gilted-edged term structure. 
Lin and Paxson (1993) also apply this methodology to 
estimate the German government bond term structure 
and conclude that the B-spline function can appropri-
ately approximate the discount function and result in 
reliable and smooth spot and forward rate curves. Dea-
can and Derry (1994) conclude that the consensus 
view in the literature appears to have a preference for 
the use of B-splines after examining various tech-
niques used for the term structure estimation. More-
over, Jarrow, David and Yu (2004) use a semi-
parametric penalized spline model to estimate the 
term structure of corporate bond, Krivobokova et al. 
(2006) use the penalized splines to analyze the term 
structure of interest rates extracted from US Treas-
ury STRIPS data.  

Parsimonious models, on the other hand, specify a 
parsimonious parameterizations of the discount func-
tion, spot rate or the implied forward rate. Chambers et 
al. (1984) consider an exponential polynomial to 
model the discount function. Nelson and Siegel (1987) 
choose an exponential function with only four un-
known parameters for modeling the forward rate of 
U.S. Treasury bills, unlike the spline class that models 
the discount function. By considering the three com-
ponents that make up this function, Nelson and Siegel 
(1987) illustrate that it can be used to generate forward 
rates curves of a variety of shapes and analytically 
solve for the spot rate. Moreover, the advantage of 
Nelson-Siegel model is that three parameters may 
be interpreted as latent level, slope and curvatures 
factors. Dield et al. (2005), Diebold and Li (2006), 
Diebold et al. (2006), Modena (2008), and Tam and 
Yu (2008) have employed the Nelson-Siegel inter-
polant to examine bond pricing with a dynamic la-
tent factor approach.  

The Extended Nelson-Siegel method, defined by Bliss 
(1996), introduces a new estimation method to fit a 
modified version of the appropriating function with 
five parameters developed by Nelson and Siegel 
(1987). Bliss suggests that a five-parameter specifica-
tion can produce better results for fitting the terms 
structure with longer maturities. Svensson (1994) in-
creases the flexibility of the original Nelson and Siegel 
model by adding two extra parameters (hereafter Nel-
son-Siegel-Svensson model) and allows for a second 
“hump” in the forward rate curve.  

The objective in empirical estimation of the term struc-
ture is to fit the data sufficiently well and, at the same 
time, obtain a sufficiently smooth and continuous 
function as the term structure of interest rates (Lin, 
2002). There has been considerable effort expanded in 
comparing the fitting performance of alternative meth-
ods of yield curve estimation. For example, Bliss 
(1996) compares five diverse methods (the 
Unsmoothed Fama-Bliss (1987), McCulloch cubic 
spline, Fisher-Nychka-Zervos cubic spline (1995), 
Extended Nelson-Siegel, and the smoothed Fama-
Bliss) for estimating the term structure and finds that 
the Unsmoothed Fama-Bliss does best overall. Ander-
son et al. (1996) compare four methods of yield curve 
estimation (Mastronikola, McCulloch, Nelson and 
Siegel, and the Nelson-Siegel-Svensson model) and 
tend to favor the Mastronikola model. Jeffrey et al. 
(2000) conclude that a nonparametric kernel smooth-
ing procedure to fit the discount function developed by 
Linton et al. (2000) overall performs notably better 
than the highly flexible McCulloch (1975) cubic spline 
and Fama-Bliss (1987) bootstrap methods. Yeh and 
Lin (2003) apply two equilibrium models: the Vasicek 
and the CIR model, and one statistical technique: the 
B-spline approximation function, as the discount func-
tion to extract the term structure from market coupon 
bond prices. They find that, although the equilibrium 
model can contain economic information and is able to 
explain the term structure dynamics, the statistical 
technique can fit the term structure better than the 
equilibrium model. Ioannides (2003) examines differ-
ent methods of estimating the term structure rates on 
daily UK Treasury bills and gilt data. The Nelson-
Siegel-Svensson functions, McCulloch’s Cubic 
spline, the linear, exponential and integrated expo-
nential B-spline and the VRP method, a total of 
seven methods are used to test their fitting perform-
ance. Ioannides suggests that the parsimonious 
specifications and VRP method perform better than 
the linear spline counterparts form in-sample and 
out-of-sample analysis of residuals.  

Clearly, the empirical results reviewed above indicate 
that it is impossible to identify one method being de-
finitively superior to all others. Since each methodol-
ogy has its strengths and weaknesses, the choice of 
which model should be used depends on one’s subjec-
tive preferences. This paper aims to estimate and ana-
lyze the Taiwan government bond (TGB) term struc-
ture of interest rates based on the parsimonious func-
tions specification, i.e. the four parameters Nelson-
Siegel model, the five parameters Extended Nelson-
Siegel method, and the six parameters Nelson-Siegel-
Svensson model. The reason why we choose the Nel-
son-Siegel families is these models have substantial 
flexibility required to match the changing shape of the 
yield curve, yet they only use few parameters. As 
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noted by Diebond and Li (2006), it can be used to 
predict the future level, slope, and curvature factors for 
bond portfolio investment purposes. To the best of our 
knowledge, no one has investigated the over parame-
ters problem for these models, i.e., is it beneficial to 
the term structure fitting performance when adding 
one or two extra parameters compared to the original 
Nelson and Siegel model. In addition, previous litera-
ture indicates that although there are lots of curve fit-
ting models that have been successfully applied to 
developed bond markets, particularly in US govern-
ment bonds and treasury bills market, however, com-
paratively little attention has been paid to emerging 
markets (for example, Alper et al., 2004; Dutta et al., 
2005; Cortazar et al., 2007). The developed bond mar-
kets are generally well established and comprised of 
relatively liquid securities with short and long maturi-
ties. However, in the developing economies with 
sparse bond market price data, a substantial portion of 
the secondary market trading is concentrated in a 
handful of bonds that the market perceives liquid, thus 
it is not meaningful to estimate the term structure 
based on a small number of liquid securities. Subra-
manian (2001) is the pioneer in positing a model for 
the yield curve estimation based on a liquidity-
weighted objective functions to ensure that liquid 
bonds in the market are priced with smaller errors than 
the illiquid bonds. 

Compared to other developed countries’ bond markets, 
Taiwan bonds and bills market has a noticeably 
smaller trading volume and is not liquid. In financing 
national development projects, the government has 
begun to issue bonds in large volume since 1991. And 
since then, the bond market has gathered more and 
more volume in both the primary and secondary mar-
kets. In 2007, the trading volume of bond’s secondary 
market reached NT$ 194 trillion1, as compared to the 
stock market’s NT$ 26.1 trillion; the scale of bond 
trading is about 7.4 times that of the stock market, 
showing that the Taiwan bond market has truly ex-
panded. Figure 1 shows the movements of 10-year 
Treasury bond yield and 10-day Commercial paper 
interest rate. 

Recently, to accelerate the pace of liberalization and 
internationalization, the authorities have greatly eased 
the regulations and thus improved the trade efficiency 
in the secondary market. In order to attract more for-
eign interest and further develop Taiwan as an Asian-
Pacific regional financial center, the Taiwan Futures 
Exchange (TAIFEX) launched its operation in July of 
1998 and introduced a local 10-year Government 
Bond Futures for hedging and speculation purposes. 
After the strenuous efforts of several years, the Taiwan 
financial market has been placed on the top of the list 
of fast-growing markets in the world.  
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Fig. 1. Time path of the 10-year Treasury bond yield and 10-day Commercial paper interest rate 

This study is the first of its kind to use a family of 
Nelson-Siegel yield curve models for estimating the 
term structure in an emerging market economy, 
Taiwan. Meanwhile, we will provide the empirical 
results for both fitting performance with and without 
considering liquidity constraint. Following this brief 
introduction, Section 1 is the empirical methodol-
ogy. Section 2 presents the empirical results. And 
the concluding remarks are given in the last section.  

1. Empirical methodology 

Assume that there are n default-free coupon bonds 
in the sample to estimate the term structure of inter-

est rates. Because the value of the coupon bond i, 
iB  is simply the present value of the stream of fu-

ture cash flows it provides. That is, 1  
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where imCF  is the cash flow paid by bond i occur-
ring at time m = 1,…,T (the maturity of the bond), 

                                                      
1 The average exchange rate is US$1= NT$ 32.842 in this year. 
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and )(mR  is usually referred to as the spot interest 
rate for maturity m years.  

1.1. Nelson-Siegel Model. The Nelson-Siegel 
Model chooses a function form of the forward rate 
curve that allows it to take a number of shapes. The 
instantaneous forward rate at maturity m is given by 
the solution to a second-order differential equation 
with real and equal roots. The function form they 
suggest is: 

)]exp()[()exp()( 210 ττ
β

τ
ββ mmmmf −

+
−

+= .   (2) 

The first term, 0β , represents the long-term value 
of the interest rate. The second and third terms, 

1β  and 2β , indicate the slope and curvature pa-
rameter. The time constant τ  is the scale parame-
ter that measures the rate at which the short-term 
and medium-term components decay to zero. For 
example, small values of τ  result in rapid decay 
in the predictor variables and therefore will be 
suitable for curvature at low maturities. Corre-
sponding, large values of τ  produce slow decay 
in the predictor variables and will be suitable for 
curvature over longer maturities (Christofi, 1998). 
Following McCulloch’s (1971) definition of the

yield as an average of the forward rate, the spot 
interest rate for maturity m can be derived by in-
tegrating Eq. (2) from zero to m and dividing by 
m. The resulting function can be expressed as 
follows: 
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Unfortunately, the true underlying term structure is 
unobservable in TGB market. However, in an effi-
cient market, a correctly specified term structure 
estimation model would exactly explain the ob-
served bond prices for all maturities. On the bond 
markets we could observe deviations between the 
market price (quoted price plus accrued interest) and 
the theoretical model price given an estimated term 
structure of interest rates as follows:  

niBP iii ≤≤+= 1,ε                                  (4) 

where iP  denotes the market price of the coupon 

bond i, iε then is the pricing error of bond i1.  

Combining Eqs. (1), (3) and (4) results in Eq. (5): 
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Thus, we can estimate the above four parameters, 
{ }τβββϕ ,,, 210≡ , embedded in Nelson-Siegel 

model using the following nonlinear, constrained 
optimization estimation procedure based on the 
modified Gauss-Newton numerical method (see 
Hartley, 1961):  
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1.2. Extended Nelson-Siegel Model. The Extended 
Nelson-Siegel Model sets the instantaneous forward 
rate at maturity m given by the solution to a second-
order differential equation with unequal roots as 
follows: 
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where the unknown parameters 0β , 1β , and 2β  
have the same economic interpretation as the Nel-
son-Siegel model, the parameters 1τ and 2τ  deter-
mine the speed of convergence for 1β  and 2β . 

The spot rate can be derived by integrating the 
forward rate and is given by1 

( ) +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟

⎠

⎞
⎜
⎝

⎛+=
1

1
10 1

τ
mexp

m
τ

ββmR   

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−⎟

⎠

⎞
⎜
⎝

⎛+ 11
22

2
2 τ

m
τ
mexp

m
τ

β .                    (8) 

Also, by the same estimation procedure, we can 
estimate the above five parameters, 

{ }21210 ,,,, ττβββϕ ≡ , embedded in Extended Nel-
son-Siegel model using the following nonlinear, 
constrained optimization estimation procedure 
based on the modified Gauss-Newton numerical 
method.  

                                                      
1 The pricing error may be caused by transaction costs, coupon effects, 
market imperfection, and so on. 
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1.3. Nelson-Siegel-Svensson Model. To increase 
the flexibility and improve the fitting perform-
ance, Svensson (1994) extends Nelson and 
Siegel’s instantaneous forward rate function by 
adding a fourth term, a second hump-shape (or U-

shape), ⎟⎟
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rameters, 3β  and 2τ . The function is then set as  
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where the unknown parameters 0β , 1β , 2β  and 

1τ have the same economic interpretation as the 
Nelson-Siegel model, and the two additional 

parameters, 3β  and 2τ  denote the same meaning 
as 2β  and 1τ . 

The spot rate can be derived by integrating the for-
ward rate and is given by 
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Similarly, in Eq. (12), the six parameters 
( { }213210 ,,,,, ττββββϕ ≡ ) embedded in Nelson-
Siegel-Svensson Model could be obtained.  
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1.4. Liquidity-weighted objective functions. As 
mentioned earlier, the pricing errors should be 
minimal if the term structure is the only factor that 
determines the price of a bond. Since the reliability 
of the term structure estimation heavily depends on 
the precision of market prices, as noted by Subra-
manian (2001), liquidity and illiquid securities are a 
heterogeneous class and including them both in the 
term structure estimation process poses problems. 
Illiquid bonds are traded at a premium to compen-
sate for their undesirable attribute in terms of a 
lower price. Subramanian suggests a liquidity-
weighted objective function, which hypothesizes 
that a weighted error function (with weights based 
on liquidity) would lead to better estimation than 
equal weights to the squared errors of all securities. 
More precisely, a hyperbolic tangent function (tanh) 
used to model the liquidity, which is represented by 
the volume traded in a security and the number of 
trades in that security, can be expressed as follows: 

( )[ ] ( )[ ]maximaxii n/ntanhv/vtanhw −+−= ,        (13) 

where iν  and in  are the volume of trades and the 
number of trades in the i security, while maxν  and 

maxn  are the maximum volume of trades and the 

maximum number of trades for all the securities 
traded for the day. As given in Eq. (13), it ensures 
that the weights of the relatively liquid securities 
would not be significantly different from each other. 
For the illiquid securities, however, the weights 
would fall quickly as liquidity decreased.  

In TGB market, the bonds are usually bought and 
sold in large lots, excluding transactions from small 
investors. Banks and other large financial institu-
tions often purchase their positions in the primary 
market, and very rarely engage in the secondary 
market. Except for a few on-the-run issues, the 
transaction volumes in off-the-run issues are fairly 
small and illiquid. Thus, it is quite suitable to esti-
mate the TGB term structure in a liquidity-weighted 
error function. In TGB market, the data set only 
contains the “the volume of trades” in a bond, how-
ever, “the number of trades” in each security is not 
available. Thus, with a simple modification, we can 
reset the liquidity-weighted error function as Eq. 
(14) owing to a positive relationship between “the 
volume of trades” and “the number of trades” in 
each security.  

( )[ ]maxii v/vtanhw −= .                                       (14) 

The objective function is thus given by: 
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1.5. Test statistics. It is worth noting that, in the 
academic literature, there are two distinct ap-
proaches used to indicate the term structure fitting 
performance. One is the flexibility of the curve 
(accuracy), and the other focuses on the smooth-
ness for the yield curve. Although there are nu-
merical methods proposed to estimate the term 
structure, any method developed has to grapple 
with deciding the extent of the above trade-off. 
Hence, in the literature, it becomes a crucial issue 
to investigate how to reach a compromise between 
the flexibility and smoothness.  

Three simple summary statistics which can be 
calculated for the flexibility of the estimated yield 
curve are the coefficient of determination, root 
mean squared percentage error, and root mean 
squared error. These are calculated as: 

(1) The coefficient of determination ( 2R ) 
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where P  is the mean average price of all ob-
served bonds, iB̂  is the model price of bond i, k is 
the number of parameters needed to estimate. 
Roughly speaking, with the same analysis in re-
gression, we associate a high value of 2R  with a 
good fit of the term structure and associate a low 
value 2R  with a poor fit.  

(2) Root mean squared percentage error (RMSPE) 
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Denoted as the RMSPE, a low value for this 
measure is assumed to indicate that the model is 
flexible, on average, and is able to fit the yield 
curve.  

(3) Root mean squared error (RMSE) 
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Denoted as the RMSE, a low value for this measure 
is also assumed to indicate that the model is flexible, 
on average, and is able to fit the yield curve.  

Meanwhile, we use the following index, a modi-
fied statistic suggested by Adams and Deventer 

(1994) to reach the maximum smoothness for 
forward rate curve, and denote the smoothness (Z) 
for the estimated yield curve as: 
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2. Empirical results  

2.1. Data. In Taiwan, nearly all bond transactions 
take place on the OTC market. The Electronic 
Bond Trading System (EBTS) is now the main 
trading platform used by most securities firms and 
dealers for price negotiation (quoted in yields to 
maturity). The data used in this study are taken 
from the Taiwan Economic Journal Data Bank 
(TEJDB). The sample period contains 417 weekly 
data from January 2000 to December 2007. 
Weekly prices (every Friday) for 115 TGBs with 
original maturity dates ranged from 2 to 30 years 
are obtained. Although the TGBs are not actively 
traded, the actual sample sizes are more than 27 
TGBs in each sample week.  
2.2. Fitting performance without liquidity con-
straint. 2.2.1. Nelson-Siegel Model. Table 1 lists 
the summary statistics of estimated parameters for 
the Nelson-Siegel Model. For the purposes of 
describing the movements of estimated yield 
curves more clearly, we divide our sample periods 
into seven sub-periods by years. It is obvious that, 
in most cases, we have a negative mean value 
( 1β̂ ) and positive mean value ( 2β̂ ), which indi-
cates that the yield curves in years 2000, 2002, 
2003, 2004, and 2007 have a positively upward 
sloping and a slightly humped shape. In addition, 
in the years of 2001, 2005 and 2006, we have a 
negative mean value ( 1β̂  and 2β̂ ), which indi-
cates the yield curves have a positively upward 
sloping.  

Figure 2 shows the movements of the estimated 
yield curves for the Nelson-Siegel Model. We 
estimate a discrete yield curve which is composed 
of 30 different maturities from 1 to 30 years. 
Generally speaking, the estimated yield curves for 
the three fitting models move from the same 
downward trend, especially in the long-term end. 
This pattern is also consistent with the tendency 
that the long-term interest rates in global economy 
have been especially prone to fall for the last two 
decades. However, in the short-term end, the phe-
nomenon that estimation on short-term spot rates 
seems fluctuating could be on account of the trad-
ing observations for short-term TGBs being insuf-
ficient. 
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Table 1. Results of estimated parameters for Nelson-Siegel Model  
(without liquidity constraint) 

Parameters 
Year 

0β̂  1β̂  2β̂  τ̂  

2000 0.0565 -0.0144 0.0060 3.1712 

2001 0.0471 -0.0118 -0.0124 4.2369 

2002 0.0385 -0.0155 0.0123 4.7833 

2003 0.0346 -0.0205 0.0099 9.0127 

2004 0.0339 -0.0187 0.0199 9.9274 

2005 0.0263 -0.0132 -0.0095 2.5219 

2006 0.0214 -0.0072 -0.0246 1.4887 

2007 0.0232 -0.0081 0.0070 2.5831 

 
Fig. 2. The time paths of estimated yield curves for Nelson-Siegel Model (without liquidity constraint) 

2.2.2. Extended Nelson-Siegel Model. Table 2 lists 
the summary statistics of estimated parameters for 
the Extended Nelson-Siegel Model. Figure 3 shows 
the movements of the estimated yield curves for the 
Extended Nelson-Siegel Model. Both the estimated 
parameters, 1β̂  and 2β̂ , are negative in the years 

2000, 2003 and 2005. It indicates that the yield 
curves are positively upward sloping. And in the 
years 2001, 2002, 2004, 2006 and 2007, the esti-
mated 1β̂  is negative and the estimated 2β̂  is posi-
tive, showing the yield curves have a positively 
upward sloping and a slightly humped shape.  

Table 2. Results of estimated parameters for Extended Nelson-Siegel Model  
 (without liquidity constraint) 

Parameters 
Year 

0β̂  1β̂  2β̂  1̂τ  2τ̂  

2000 0.0598 -0.0179 -0.0010 1.7217 3.4570 

2001 0.0462 -0.0162 0.0087 3.7184 4.3798 

2002 0.0422 -0.0164 0.0011 4.4535 4.4226 
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Table 2 (cont.). Results of estimated parameters for Extended Nelson-Siegel Model  
(without liquidity constraint) 

Parameters 
Year 

0β̂  1β̂  2β̂  1̂τ  2τ̂  

2003 0.0366 -0.0195 -0.0197 3.8404 2.9491 

2004 0.0317 -0.0179 0.0049 0.0273 11.9753 

2005 0.0297 -0.0147 -0.0032 7.5070 7.2075 

2006 0.0245 -0.0118 0.0035 9.3278 2.6375 

2007 0.0242 -0.0174 0.0182 3.6225 1.5803 

 
Fig. 3. The time paths of estimated yield curves for Extended Nelson-Siegel Model (without liquidity constraint) 

2.2.3. Nelson-Siegel-Svensson Model. Table 3 lists 
the summary statistics of estimated parameters for 
the Nelson-Siegel-Svensson Model. Figure 4 shows 
the movements of the estimated yield curves for the 
Nelson-Siegel-Svensson Model. Both the estimated 
parameters, 1β̂  and 2β̂ , are negative from the year 
of 2001 to 2006. It indicates that the yield curves are 
positively upward sloping. And in 2000, the esti-
mated 1β̂  is negative and the estimated 2β̂  is posi-
tive, showing the yield curves have a positively 

upward sloping and a slightly humped shape. On the 
contrary, in the year 2007, the average estimated 1β̂  

value is positive and the average estimated 2β̂  value 
is negative, which indicates the yield curves have a 
negatively downward sloping shape.  

Thus, from the empirical results, we conclude that a 
different shape for estimated yield curve will be 
obtained if we adopt different fitting models to es-
timate the term structure of interest rates.  

Table 3. Results of estimated parameters for Nelson-Siegel-Svensson Model 
(without liquidity constraint) 

Parameters 
Year 

0β̂  1β̂  2β̂  3β̂  1τ̂  2τ̂  

2000 0.0595 -0.0103 0.0163 -0.0195 3.9425 3.8807 

2001 0.0076 -0.0027 -0.0540 0.0080 13.0955 13.0886 
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Table 3 (cont.). Results of estimated parameters for Nelson-Siegel-Svensson Model  
(without liquidity constraint) 

Parameters 
Year 

0β̂  1β̂  2β̂  3β̂  1τ̂  2τ̂  

2002 0.0441 -0.0253 -0.0265 -0.0013 1.1500 1.1258 

2003 0.0356 -0.0270 -0.0077 -0.0111 2.1545 1.8582 

2004 0.0351 -0.0199 -0.0134 0.0060 3.8562 2.8016 

2005 0.0274 -0.0084 -0.0135 -0.0072 2.1134 2.0475 

2006 0.0254 -0.0060 -0.0009 -0.0146 2.4073 2.4580 

2007 0.0251 0.0084 -0.0170 -0.0138 1.5267 1.4968 

 
Fig. 4. The time paths of estimated yield curves for Nelson-Siegel-Svensson Model (without liquidity constraint) 

2.2.4. Comparison for fitting performance in accu-
racy. As mentioned above, the shape of the yield 
curve is quite different using a family of Nelson-
Siegel yield curve models. To move further ahead, 
we list the summary statistics in Table 4, the coeffi-
cient of determination, root mean squared percent-
age error, and root mean squared error, and compare 
the fitting performance for these three models. From 
Table 4, we find the R-square value of these three 
models is higher than 0.96. This shows the superior-
ity of all these three models. The fitting performance 
of Nelson-Siegel-Svensson Model (0.9706) is better 
than that of Extended Nelson-Siegel Model 
(0.9646), and the Extended Nelson-Siegel Model is 
better than that of Nelson-Siegel Model (0.9638). 
Similarly, we can also reach the same conclusion if 

we adopt another two indicators, the RMSPE and 
RMSE values as judgment criteria. This means that 
adding a parameter can better capture the shape of 
the term structure in reality.  

We conclude that, in Table 4, the Nelson-Siegel-
Svensson Model has best fitting performance in 
accuracy from the mean value for three models 
and the differences in absolute value between 
these models seem significant. Here the statistics 
test for fitting performance in accuracy is dis-
played in Table 5, which indicates that at the 5% 
and 10% levels, the 2R  of Nelson-Siegel-
Svensson model is higher than that of Nelson-
Siegel model and Extended Nelson-Siegel model 
in terms of paired tests.  
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Table 4. Summary statistics for fitting performance in accuracy (without liquidity constraint) 

RMSPE RMSE 2R  

 Nelson-
Siegel 

Extended 
Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Nelson-
Siegel 

Extended 
Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Nelson-
Siegel 

Extended 
Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Mean 0.0145 0.0145 0.0129 1.6439 1.6420 1.4746 0.9638 0.9646 0.9706 

Std. dev 0.0067 0.0072 0.0062 0.8085 0.8551 0.7410 0.0510 0.0498 0.0356 

Max 0.0495 0.0494 0.0395 5.8012 5.8096 4.9366 0.9977 0.9982 0.9976 

Min 0.0046 0.0049 0.0040 0.4945 0.5252 0.4275 0.8068 0.7982 0.7939 

Table 5. Statistics test for fitting performance in accuracy (without liquidity constraint) 

2R  RMSPE RMSE 

 Nelson-
Siegel-

Svensson 

Extended 
Nelson-
Siegel 

Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Extended 
Nelson-
Siegel 

Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Extended 
Nelson-
Siegel 

Nelson-
Siegel 

Nelson-
Siegel-

Svensson 
- 1.9295* 2.1925** - -3.2895*** -3.3734*** - -3.1334*** -3.1042*** 

Extended 
Nelson-
Siegel 

 - 0.2713  - 0.0375  - 0.1255 

Nelson-
Siegel   -   -   - 

Notes: * denotes significance at 10% level, ** denotes significance at 5% level, *** denotes significance at 1% level. 

2.3. Fitting performance with liquidity con-
straint. 2.3.1. Nelson-Siegel Model. Table 6 lists the 
summary statistics of estimated parameters for the 
Nelson-Siegel Model with liquidity constraint. It is 
seen that all the estimated values for 1β̂  and 2β̂  are 
negative in seven sub-sample periods. It indicates 
that the yield curves are  positively  upward sloping. 

The movements of the estimated yield curves for the 
Nelson-Siegel Model with liquidity constraint are 
displayed in Figure 5. Compared with Figure 1, the 
estimated yield curves are much smoother. Thus, we 
conclude that it will provide diverse shapes in esti-
mated yield curves for the same Nelson-Siegel 
Model while incorporating the liquidity constraint.  

 
Fig. 5. The time paths of estimated yield curves for Nelson-Siegel Model (with liquidity constraint) 
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Table 6. Results of estimated parameters for Nelson-Siegel Model  
 (with liquidity constraint) 

Parameters 
Year 

0β̂  1β̂  2β̂  τ̂  

2000 0.0587 -0.0115 -0.0040 4.6089 

2001 0.0463 -0.0090 -0.0127 3.2148 

2002 0.0454 -0.0133 -0.0388 1.8327 

2003 0.0356 -0.0183 -0.0425 2.1674 

2004 0.0358 -0.0164 -0.0493 1.0232 

2005 0.0225 -0.0085 -0.0819 0.6237 

2006 0.0225 -0.0085 -0.0819 0.6237 

2007 0.0241 -0.0091 -0.0213 1.0595 
 

2.3.2. Extended Nelson-Siegel Model. Table 7 re-
ports the summary statistics of estimated parameters 
for the Extended Nelson-Siegel Model. Figure 6 
shows the movements of the estimated yield curves 
for the Extended Nelson-Siegel Model. We can find 
that,  in  the  years  2002,  2005,  2006 and 2007, the 

estimated 1β̂  is negative and the estimated 2β̂  is 
positive, showing the yield curves have a positively 
upward sloping combined with a slightly humped 
shape; and the estimated yield curves for other sam-
ple periods show a positively upward sloping shape.  

 
Fig. 6. The time paths of estimated yield curves for Extended-Nelson-Siegel Model (with liquidity constraint)  

Table 7. Results of estimated parameters for Extended Nelson-Siegel Model  
(with liquidity constraint) 

Parameters 
Year 

0β̂
 1β̂  2β̂  1̂τ  2τ̂  

2000 0.0590 -0.0138 -0.0010 2.1459 3.3983 

2001 0.0473 -0.0121 -0.0068 2.5956 3.8261 
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Table 7 (cont.). Results of estimated parameters for Extended Nelson-Siegel Model  
(with liquidity constraint) 

Parameters 
Year 

0β̂
 1β̂  2β̂  1̂τ  2τ̂  

2002 0.0425 -0.0182 0.0020 3.3964 5.4206 

2003 0.0370 -0.0189 -0.0333 2.5649 8.1488 

2004 0.0354 -0.0181 -0.0309 2.8238 7.6419 

2005 0.0248 -0.0129 0.0025 8.0086 15.4666 

2006 0.0248 -0.0129 0.0025 8.0086 15.4666 

2007 0.0250 -0.0114 0.0072 3.3570 4.1933 
 

2.3.3. Nelson-Siegel-Svensson Model. Table 8 lists 
the summary statistics of estimated parameters for 
the Nelson-Siegel-Svensson Model. Figure 7 shows 
the movements of the estimated yield curves for the 
Nelson-Siegel-Svensson Model. From the years 
2000, 2002, and 2003  the estimated  1β̂  is  negative 

and the estimated 2β̂  is positive, showing the yield 
curves have a positively upward sloping combined 
with a slightly humped shape. And both the esti-
mated parameters, 1β̂  and 2β̂ , are negative in the 
years 2001, 2004 to 2007, showing that the yield 
curves are positively upward sloping.  

 
Fig. 7. The time paths of estimated yield curves for Nelson-Siegel-Svensson Model (with liquidity constraint) 

Table 8. Results of estimated parameters for Nelson-Siegel-Svensson Model  
 (with liquidity constraint) 

Parameters 
Year 

0β̂  1β̂  2β̂  3β̂  1τ̂  2τ̂  

2000 0.0588 -0.0125 0.0316 -0.0365 2.4513 2.3036 

2001 0.0477 -0.0152 -0.0034 0.0010 3.4306 3.4287 

2002 0.0400 -0.0284 0.0701 -0.0410 3.8971 3.6562 

2003 0.0355 -0.0293 0.0070 -0.0189 2.3245 2.1520 
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Table 8 (cont.). Results of estimated parameters for Nelson-Siegel-Svensson Model  
 (with liquidity constraint) 

Parameters 
Year 

0β̂  1β̂  2β̂  3β̂  1τ̂  2τ̂  

2004 0.0359 -0.0308 -0.0068 0.0115 3.2297 2.9008 

2005 0.0232 -0.0022 -0.0074 -0.0110 1.1180 1.1183 

2006 0.0232 -0.0022 -0.0074 -0.0110 1.1180 1.1183 

2007 0.0279 -0.0061 -0.0077 -0.0055 3.7633 3.7498 
 

2.3.4. Comparison of fitting performance in accu-
racy. In contrast to the studies without considering 
the liquidity constraint, a direct comparison for the 
three models in Table 9 appears to favor the Nelson-
Siegel-Svensson yield curve. It is further interesting 
to note that, from these three comparison indicators, 
we still reach the same conclusion for the ranking of 
their fitting performance. Looking at the statistics 
test in Table 10, formal statistics tests for three 

models, the Nelson-Siegel-Svensson Model does 
appear significantly better than the rest. The Nelson-
Siegel Model, however, shows the worst fitting per-
formance among the three models. Hence, we con-
clude that in the illiquid bond market, based on a 
family of Nelson-Siegel yield curve models, it does 
help to improve the flexibility of the yield curve if 
we add extra parameters in the parsimonious yield 
curve model.  

Table 9. Summary statistics for fitting performance in accuracy  
(with liquidity constraint) 

RMSPE RMSE 2R  

 Nelson-
Siegel 

Extended 
Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Nelson-
Siegel 

Extended 
Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Nelson-
Siegel 

Extended 
Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Mean 0.0144 0.0131 0.0122 1.6318 1.4914 1.4043 0.9654 0.9693 0.9738 

Std. Dev. 0.0066 0.0061 0.0051 0.7752 0.7299 0.6033 0.0357 0.0368 0.0299 

Max 0.0413 0.0385 0.0281 4.6311 4.5345 3.3047 0.9973 0.9976 0.9979 

Min 0.0050 0.0048 0.0041 0.5311 0.5109 0.4363 0.8015 0.7671 0.8219 

Table 10. Statistics test for fitting performance in accuracy  
 (with liquidity constraint) 

2R  RMSPE RMSE 

 Nelson-
Siegel-

Svensson 

Extended 
Nelson-
Siegel 

Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Extended 
Nelson-
Siegel 

Nelson-
Siegel 

Nelson-
Siegel-

Svensson 

Extended 
Nelson-
Siegel 

Nelson-
Siegel 

Nelson-
Siegel-

Svensson 
- 1.9230* 3.6772*** - -1.8756* -4.7236*** - -2.2599** -5.2520*** 

Extended 
Nelson-
Siegel 

 - 1.5555*  - -2.6898***  - -2.8491*** 

Nelson-
Siegel   -   -   - 

Notes: *** denotes significance at 1% level,** denotes significance at 5% level, * denotes significance at 10% level. 

As mentioned earlier in the previous section, the 
empirical results report that the Nelson-Siegel-
Svensson yield curve performs the best fitting per-
formance, with and without the liquidity constraint, 
in terms of curve flexibility across the sample pe-
riod. Thus, we only test the Nelson-Siegel-Svensson 
Model to compare the fitting performance on condi-
tion of whether the liquidity factor is considered or 

not. Table 11 shows the results of pair-wise tests for 
fitting performance in accuracy (R2). The results in 
Table 11 demonstrate that it can raise the term struc-
ture fitting performance if the liquidity factor is 
included. In this study, it is also demonstrated that the 
liquidity-weighted objective functions proposed by 
Subramanian (2001) is computationally efficient and 
appropriate to fit the yield curves in TGB market.  
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Table 11. Results for pair-wise tests of fitting 
performance in accuracy 

 With liquidity  
constraint 

Without liquidity 
constraint 

With liquidity constraint - 1.4126* 

Without liquidity 
constraint -1.4126* - 

Note: 1. * denotes significance at 10% level, the Nelson-Siegel-
Svensson model with liquidity constraint is higher than that of 
Nelson-Siegel model without liquidity constraint; 2. 2R  is used 
to stand for the fitting performance in accuracy.  

2.4. Comparison for fitting performance in accu-
racy and smoothness. When comparing alternative 
methods of term structure fitting models, there is a 
trade-off between flexibility and smoothness. In 
Table 12, the Nelson-Siegel-Svensson Model seems 
to have the best fit in flexibility for fitting the term 
structure of TGB market. However, the improve-
ment for flexibility of yield curve must be compen-
sated by the expense of a decrease in smoothness, 
thus to the contrary, the Nelson-Siegel Model be-
haves the relatively smooth yield curve. Moreover, 
comparing the smoothness (Z) of these three mod-
els, the Nelson-Siegel model is superior to its coun-
terparts, the Extended Nelson-Siegel and the Nel-
son-Siegel-Svensson Model. The possible explana-
tion is the over-parameters problem for the latter 
two models. So, as noted by Bliss (1996), “term 
structure estimation is an art, the trade-off of fit 
against parsimony and judgment of what differences 
are materials will always be subjective and depend 
on the problem at hand.”  

Table 12. Statistics tests for fitting performance in 
accuracy and smoothness 

Without liquidity  
constraint 

With liquidity constraint  

2R  Smoothness  
(Z)(x 10-6) 

2R  Smoothness  
 (Z)(x 10-6) 

Nelson-Siegel 0.9638 4.9246 0.9654 4.9822 

Extended Nelson-
Siegel 

0.9646 5.3660 0.9693 6.3840 

Nelson-Siegel-
Svensson 

0.9706 6.7525 0.9738 10.7467 

Conclusion 

The term structure of interest rates is the most impor-
tant concept in pricing all fixed income securities 
when observing the evolutions of the term structure of 
interest rates. The well estimated term structure can 
help in making investment decisions, forecasting fu-
ture interest rates and managing interest rate risk. Un-
der the rapid growth of the global bond market, the 
research of how to estimate a fitted term structure has 
become a very important issue and captures both the 
academic and practical interests. The purpose of this 
paper is to use a family of Nelson-Siegel yield curve 
models for estimating the term structure of interest 
rates in TGB market. The TGB market is smaller and 
illiquid compared to other bond markets of developing 
countries where only about a handful of liquid bonds 
get traded in a day. Illiquid bonds must also be in-
cluded in the term structure estimation procedure. To 
overcome the illiquidity constraint in TGB market, we 
attempt to estimate the parameters by the weighted 
parameter optimization. As suggested by Subramanian 
(2001), the weights have been assigned based on the 
liquidity of individual securities and ensure that liquid 
bonds in the market are priced with smaller errors than 
the illiquid bonds.  

The empirical results indicate that: (1) If we do not 
consider the liquidity constraint, the indicators for 
fitting performance in accuracy (R-square value) for 
three models are higher than 0.96. This shows the 
superiority for the family of Nelson-Siegel yield curve 
models. (2) In general, the fitting performance in accu-
racy for Nelson-Siegel-Svensson Model is better than 
that of Extended Nelson-Siegel Model, and the Ex-
tended Nelson-Siegel Model is better than that of Nel-
son-Siegel Model. It means that adding more parame-
ters will have better capability in describing the shape 
of the term structure. (3) Compared with the case of 
which the liquidity constraint is not taken into consid-
eration, these three models will have a better fitting 
performance if the liquidity constraint is considered. 

The need of related research around the term struc-
ture is definitely necessary and imperative. Mean-
while, the Taiwan capital market has become one of 
the most important markets in the Asia-Pacific area. 
Our research results can be helpful for the govern-
ment authority to draft its monetary policy and have 
important implications for the bond investors. 
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