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Poszensdaemoca 3adaua idemmuixauii necmayionap-
HUX napamempie NiHiUH020 00'€kma, sAKi MOxCHA onucamu
Mapriscvokoro modennio nepuwiozo nopsoky, 3a HASAEHICMIO
Hezayciscokux 3aeao. Anzopumm idenmuixauii € epadieum-
HO10 npouedyporo Minimizauii xomobinosanozo Qynxuyiona-
ay. Kombinosanuii pynxyionan, ¢ ceoto uepey, ckradaemo-
c 3 K6AOpamuuo020 i MoOYAbH020 PYHKUIOHANIE, 6A2U AKUX
6CMAHOBIIOIOMBCA 34 00NOMOZ0I0 NAPAMEMPA 3MIUYBAHHS.
Taxa xombinauis ynxuionanie 0036011€ ompumamu Ouin-
Ku, w0 607100i10Mmob pobacmuumu eracmusocmamu. Anzopumm
idenmucpixauii ne eumazae 3nanns ingopmauii npo cmynino
Hecmayionaprocmi 00¢i0xncyeanozo 06'ckma. Bin € naiidinou
npocmuMm, Mmomy w0 BUKOPUCMOBYE npu nodydosi modeni
inpopmauyito minvku npo odun maxkm (KpoK) 6uMiproGams.
3acmocysanns Mapxiscvioi modeni € documv epexmuenum,
OCKIIbKU 0A€ MONCAUBICM® OMPUMAMU AHATIMUMHI OUTHKU
eaacmusocmeii anzopummy. Busnaueno ymoeu 36iscrnocmi
2padienmmnozo anzopummy npu oUinyi HECMAUIOHAPHUX napa-
Mempie 6 cepeOHbOMY i CepeOHbOKBAOPAMUMHOMY 34 HAAGHI-
CM10 Hez2ayco8CLKUX 3a6a0 6UMIpIE.

Ompumani ouinku € 0ocumov 3a2abHUMU 1 3A1EHCAMb K
6i0 cmynens necmauionaprocmi 06'exmy, max i 6i0 cmamu-
CMUMHUX XapaKxmepucmux Kopuchux cuenanie i 3asad. Kpim
mo020, BU3HAUEHO GUPA3U OISL ACUMNMOMULHUX 3HAYUEH NOMUI-
KU OUIHIOBAHHA napamempie i ACUMNMOmMusHOT mounocmi ioem-
mudpixauii. Y 36°a3Ky 3 mum, wo oaui eupazu micmsmo psio
Hegidomux napamempis (3navenns oucnepciii cuenanis i 3aeao,
ducnepcii, wjo xapaxmepusye Hecmayionapnicms), 0 ix npax-
MUUH020 3ACMOCYEAHNA CNIO GUKOPUCMOBYEAMU OUTHKU UUX
napamempie. 3 uieto memoro caid ckopucmamucs 0yo0b-K010
PeKYpeHmmoio npoueoyporo OUiHKU HesidoMux napamempie i
BUKOPUCOBYBAMU 00ePIHCYEAHT OUIHKU Ol YMOUHEHHS MUX
napamempis, sxi 6x00amo 6 aneopummu. Kpim moeo, acumnmo-
MuuHi 3HAMEHH NOMUIIKU OUIHIOBAHHSL i movHOCmi i0enmudixa-
uii 3anexcamo 6i0 6ubGOPY napamempa 3MiuyeanHs

Kntouosi cnosa: Mapriecoka modens, epadienmuuii anzo-
pumm, napamemp 36aicy6ants, peKypeHmna npoueoypa, acum-
nmomuuna oyinka, mounicmo idenmupixauii
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1. Introduction

The identification problem is not only of interest in itself,
but is also an integral part of the general optimization prob-
lem. Many problems of management, forecasting, pattern
recognition, etc., are associated with the construction of a
model of the following form:

y(k)=6"x(k)+E(k),

where y(k) is the observed output signal;

(k)= (x, (k). x, (K), .y ()

is the input vector Nx1;

€

T

T

0" =(0},6,..0},)

is the vector of unknowns Mx1; é(k) is interference, and are
reduced to minimizing some pre-selected quality functional
(identification criterion).
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However, the identification problem is significantly com-
plicated if the parameters 6 change (drift) over time, i.e.
0" (k)= var.

The quadratic functional most widely used in practice
leads to various identification algorithms that allow obtain-
ing estimates of the sought vector 6° with normal interfer-
ence distributions, i. e. &(k) ~ N(O, 0‘2).

Most of available identification methods are based on the
use of strict and difficult to test conditions associated with
the hypothesis of normality of the interference distribution
law and justified by references to the central limit theorem.
As is known, the normal law of distribution density describes
interference present in measurements carried out under
absolute stability of measurement conditions, the Laplace’s
law having longer “tails” — interference occurring under
maximum instability of conditions. Accordingly, identifi-
cation algorithms in the case of Gaussian interference are
based on the least squares (LS) method, and in the case of
interference distributed according to Laplace’s law, they
are based on the least absolute deviations (LAD) method.
Both of these methods are optimal in their conditions and



the solutions obtained with their help may vary greatly.
Furthermore, since in practice these extreme cases are very
rarely implemented, neither the Gauss’s law nor the Laplace’s
law are usually fulfilled.

In this regard, it seems very relevant to develop an ap-
proach to robust estimation of non-stationary parameters
using some combined functional, which allows combining
LS and LAD.

2. Literature review and problem statement

To estimate non-stationary parameters, modified LS al-
gorithms (use of a sliding window or exponential smoothing,
etc.), Kaczmarz algorithm proposed in [1] and its modifi-
cations, dynamic adaptation algorithms, etc. are common-
ly used. In particular, the Kaczmarz algorithm has been
studied in sufficient detail in [2—6]. Modifications of this
algorithm are associated with an increase in computational
stability and improvement of dynamic properties. So, in [2], the
modified (regularized) Kaczmarz algorithm was studied, in [3]
its multi-step modification was considered, in [4] weighting
of estimates to increase the speed of this algorithm was
proposed. In [5], analytical expressions for asymptotic and
non-asymptotic estimates were obtained and expressions for
optimal values of the relaxation parameter of the Kaczmarz
algorithm providing its maximum convergence rate were
determined. In [6], a randomized version of the Kaczmarz
method for consistent, overdetermined linear systems was
proposed and it was proved that it converges at the expected
exponential rate. In [7, 8], the efficiency of the Kaczmarz
algorithm in estimating the non-stationary parameters de-
scribed by the first-order Markov model was studied.

It should be noted that both the algorithm and all the
modifications mentioned are based on the use of quadratic
identification (estimation) criterion, i. e., they are varieties
of the least squares (LS) method. Being the optimal esti-
mation method with Gaussian interference, LS is not stable
with non-Gaussian interference. This is because in this case
the objective function can grow to infinity and outliers can
become dominant dimensions that actually test the real
model. Alternatively, to ensure robustness, the objective
function is modified to limit the influence of the largest
measurements. The main consequence of this is generally
a lower convergence rate of optimization algorithms. This
is due to the fact that distinguishing between outliers and
useful measurements for the first time is very difficult. In
this regard, some outliers can be filtered out, leading to a
decrease in convergence rate. In the most difficult case,
small but biased measurements move the minimum of the
objective function.

If information about the affiliation of interference & to a
certain class of distributions is known, then by minimizing
the optimal criterion, which is the inverse logarithm of the
interference distribution function, the maximum likelihood
estimate (M-estimate) can be obtained. If there is no such in-
formation, then to evaluate the desired parameter vector 9,
one should apply some non-quadratic criterion that ensures
the robustness of the resulting estimate. One of the criteria
is modular criterion leading to a sign algorithm. Application
of this criterion in the problem of object identification with
impulse interference was considered in [9-12]. So, [9] stud-
ied the efficiency of the affine projection algorithm, [10] used
the variable-gain affine projection algorithm. It should be

noted that sign algorithms, providing robustness of the ob-
tained estimates, have a low convergence rate. Therefore, in
order to accelerate the estimation process, a normalized sign
identification algorithm was proposed and studied in [11].
[12] studies an easy-to-implement algorithm, which uses
RMS error and estimated interference power to correct the
step size. The theoretical results of its stationary behavior,
obtained for the case of Gaussian input signals, are in good
agreement with the experimental results. Similarly, [13] con-
siders the Kaczmarz algorithm with variable gain depending
on the squared cross-correlation between the squared output
error and adaptive model output and shows its effectiveness
in solving some noise reduction problems.

There are a fairly large number of functionals that pro-
vide robust M-estimates. The most common are combined
functionals proposed by Huber [14, 15] and Hempel [16, 17].
They consist of a quadratic functional that ensures the
optimality of estimates for the Gaussian distribution and
modular one that allows obtaining a more robust estimate
for distributions with heavy “tails” (outliers).

These functionals (p) and their influence functions (y)
have the following form:

62
3, |e| <c¢
Py (e) =
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where e is the estimation error.

It should be noted that M-estimates are usually de-
scribed by setting an influence function rather than a mini-
mized functional.

The Huber function y is monotonic, and the Hempel
function y is nonmonotonic. As noted in [18], with heavy-
tailed distribution, the use of nonmonotonic y functions
improves the estimation results.

The effectiveness of these functionals depends on how
well the constants a, b, ¢ and d included in them are chosen,
which determine the degree of interference immunity. In
the above studies, it is recommended to choose the values a
from the interval [6,26], where o is the standard deviation



of observation x, and set the values b, ¢ and d to 1.5, 3.5,
and 8, respectively.

A modification of Huber estimates are the Mallows es-
timates [19]. Along with weighing of residuals &, weighing
of factors is performed, which makes it possible to reduce
the influence of points that stand out sharply in the space of
independent variables. To find the Mallows estimates, it is
necessary to solve p+1 equations

3 wlelil)
e v (vl m=0.4..p

v(e)

where vy is determined by Huber (2), and

p

v (sl =TT (o1

J

Due to the fact that the modular criterion provides an
estimate that is less sensitive to interference distribution
tails than the LS estimate, such a kind of modular criterion
as A. Forsythe functional is of interest [20]

Fle(0)]=[e(&) *)

where 0<A<2.

Forsythe estimates (4) are close to Huber ones, yet lack
such a convincing theoretical justification. It is empirically
shown that A=1.5 is acceptable. For A=2, the Forsythe esti-
mates coincide with the LS estimates, and for A=1 we obtain
the least absolute deviations (modules) (LDA) method,
which minimizes the functional

Q=2 [e(i)| )

To obtain Merrill-Schweppe estimates, the functional
[20] is used

(©) 1.’ lg|<k,
plE)=
Yz\/gy |£|>kv

where v,>0,v,>0,0<k%.

As follows from the above formulas and as noted above,
the effectiveness of the obtained robust estimates substan-
tially depends on the numerous parameters used in the crite-
ria and selected based on the researcher’s experience.

The practical application of the considered functionals for
solving the identification problem was considered in many
works. In particular, in [21-24] the robust approach was
applied to the identification of nonlinear systems. For this
purpose, radial basis function networks [21, 22], evolving net-
works [23], and evolving radial basis function networks [24]
were used. Learning of these networks was carried out on the
basis of minimizing the robust functionals considered above.

Another approach to obtaining robust estimates devoid
of this drawback is the use of a combined criterion.

A combined estimation criterion to accelerate the iden-
tification process using a combination of quadratic criterion
and fourth degree criterion, proposed and studied in [25], was
developed in [26-30]. [26] investigated the stability of the

algorithm under Gaussian input signals. In [27], normaliza-
tion of the least mean fourth algorithm was proposed, which
protects the algorithm from divergence when the input signal
power increases and an approximate stability boundary of this
algorithm was obtained. In [28], the problem of stability of the
adaptive least mean algorithm was considered and normaliza-
tion of the update term of the weight vector using the fourth
order in the regressor and the second order in the estimation
error was proposed. This allows increasing the stability of the
algorithm with increasing the dispersion of the input signal
and the type of distribution of the input signal. [29] also stud-
ied the problem of increasing the stability of the least mean
algorithm in the context of adaptive interference reduction
and showed under what conditions the algorithm minimizing
the fourth degree criterion is superior to the Kaczmarz algo-
rithm. In [30], the mean-square convergence of the least mean
fourth algorithm for various cases, including non-Gaussian
interference distributions, was analyzed. However, the anal-
ysis assumes the presence of a reference zero-mean Gaussian
signal, which is not always possible.

In [31], the fourth degree criterion was replaced with the
least absolute deviations criterion, which made it possible to
ensure the robustness of the obtained estimates under im-
pulse interference conditions. The normalized modification
of the identification algorithm considered in [32] was stud-
ied in [33, 34], where the presence of impulse interference
was also taken into account.

In [35], the use of an adaptive combination of two nor-
malized filters to obtain robust estimates in the identifica-
tion problem was studied. It should be noted that this criteri-
on proved to be very effective and much easier to implement
in the identification procedure.

3. The aim and objectives of the study

The aim of the work is to study the convergence of
gradient algorithms of identification of non-stationary pa-
rameters described by the first-order Markov model under
non-Gaussian interference and to determine parameters of
the algorithms ensuring their maximum convergence rate.

To achieve the aim, the following objectives were set:

—to obtain analytical estimates of mean and mean-
square convergence of the gradient minimization algorithm
of the combined functional;

—to determine the maximum attainable (asymptotic)
values of parameter estimation errors and identification er-
rors in the considered conditions.

4. Obtaining analytical estimates of convergence of
robust identification procedure

Note that to ensure robustness of the obtained esti-
mates, it is quite effective to use a combined learning func-
tional [31, 32]

Fle(k)]=AM {e” (k)}+(1-2) M {le(k)|}, (6)
where

e(k+1)=y(k+1)-y(k+1)=
= y(k+1)—0" (k)x(k+1),



y(k+1)

is the output signal of the model;

B(k) = (8,(k),8,(k),.0, (k)"

is the vector of estimated parameters N x1; 7y is the param-
eter affecting the convergence rate of the algorithm; A €[0,1]
is the mixing parameter.

When using the combined criterion (6), the gradient
minimization procedure has the following form

0(k)=0(k—1)+

k)[kZe(k)+(1—k)signe(k)]x(k). (7

This procedure combines the properties of LS with those
of LAD, since when A =1 (7) implies the LS algorithm, and
when A=0 — LAD algorithm (5), and allows dealing with
impulse interference. By varying the parameter A, one can
change the properties of the algorithm.

To obtain analytical estimates in the non-stationary
case, it was assumed, like in [7, 8], that the non-stationary
parameters of an object can be represented by a first-order
Markov model

0(k)=0(k—1)+S5(k), 8)
where
S(k)=(S, (k). S, (k)...Sy (k)

is the vector of random sequence N x1; S, ~ N(O, Gf).
We introduce the estimation error

T

6(k)=6(k)-0(k). )

It is assumed that components of the estimation error
vector B(k) obey the normal distribution law with

M{6, (k)}

and dispersion o; (k) [36], that is, all components of the estima-
tion vector 0,(k) are distributed according to the normal law

)

A

0,(k)~ N (m,(k), o7 (k)),

i

with the probability density function
1

8, () = - x
f(| ’( )|) 27’5(5?(/@)
(18} ) (18s s 1))
x|e 20 4o 200 U(éi(k)),
where

The mean of this distribution is determined by the
formula

M{|é(k|} j|e |(é |) 8(k)|=

_ m(k) ), 2y e

—m@w#[ﬁgﬁa]J;iw) <t
where

erf (x)2—= Je" dt

is the Gaussian error function.
In view of (8), the expression for e(k) can be written as
follows:

e(k)=0" (k—1)x(k)+S" (k)x(k)+E(k). (10)
Since it is assumed that E_,(k) ~ N(O, Gé), we have
e (B} =t +otm o)} (1)

where M is the symbol of mathematical expectation; [ is
the Euclidean norm.

Consider the convergence of the procedure (7). To this
end, we introduce the Lyapunov function ||9(k)||

Given the accepted form of non-stationarity (3), the
algorithm of identification errors (i) can be written as
follows

(12)

Multiplying both sides of (12) on the left by 87 (k), tak-
ing into account that e(k)=0"(k—1)x(k), we have

8(k)=8(k—1)—y[ 20 (k) +(1-1)signe(k) ] x (k)

[ =8 (%~ 1) ~412e? (k)

=2y(1-2)e (k)signe

+472x(1 A)e(k)signe(
(1) IIx I

From (13) it can be seen that since y>0, the increment
of the Lyapunov function

+ 4’YZ}\42 2

(e (k)]"+

(B () +

(13)

B=[oee) ~[oce-1[
will be negative if

2(20e” (k) + (1-1)[e(k)])>

> y(2he(k)+ (1= 2)e(®)) [ (4] (14)

Thus, the convergence condition of the procedure (7)
will hold if the parameter y satisfies the inequality
2e(k)
(Ke(k) +(1-2)signe( )"x ||

0<y< 15)

The optimal value of the parameter y is determined
from the equation obtained by differentiating (13) by y and
equating the derivative to zero. Thus



(16)

L (ken +(1- 7u)signen)||xﬂ||2 ‘

We examine the statistical properties of the learning
procedure (7) with measurement interference, i. e.

y'(k)=0"x(k)+E(k), E(k)~N(0,06°).

Suppose that interference is not correlated with useful
signals. Writing (7) regarding learning errors, we have (12).

Consider the expectation M {é(k)} Averaging both
sides of (12), we obtain

M{B(k)}=
= M{B(k—1)—291(8" (k1) (k)+&()) (k)

—y(1-2)sign (8" (k1) (k))xc(k)}. A7)
It’s easy to see that

M{O" (k—1)x(k)xc(k)} = M {x(k)x" (k)8 (k 1)} =

=M {x(k)x" (k)}M{B(k-1)} =R M{B(k-1)}, (18)

where R is the correlation matrix of the input signal.
We consider in detail the expression

M{ac(k)sign (6" (k1) (k))xc(k)}.

In this case, if the signal x(k)~

M{ax(k) 31gn(éT(k-1)x(k))}:
M{ x(k) 51gn GT k—1)x (k))\é(k—i)}}:

M{ o k)(eT(k 1)x ())|e(k_1)}}=

%

(0 cr), we have

7 (R)8(k=1) (k- 1)}}

M o(k—1)}= \/ZRHM{G(k—i)}, (19)

where o, is the RMS value of the error e(k).

The expression (14) was obtained using Price’s theo-
rem [37], according to which for two random Gaussian quan-
tities x and y with zero expectations, the following is true

. 21
M{xsigny}= \/%G—M{xy},
Yy

where o, is the RMS value of y.
Taklng into account the properties of interference

M{F;(k)x(k)} =0

and expressions (13), (14), we have

M{B(k)}={1-2AR, ~v(1-=1)BR}M{8(k=1)}. 20) —purr M {[o(k-1)]'|=Bo*M{fo(k-1)[ }.

whence it follows that the procedure (7) will converge in
mean if the parameter y satisfies the inequality

<

2
(20 +(1-1)B)erR,,

2y

O<y<

Here

B= 2

TG’
trR,, is the trace of the matrix R
“Given the properties of the mput signals, we can write

the condition (21) as follows:

2
(22+(1-1)B)No’

Consider the Lyapunov function M {"é(k)"Z}

O<y< (22)

Taking the mathematical expectation from both sides
of (13), we have

wr{focef = {0 - 46" (k1) (1) -
=2y(1-2)8" (k—1)x(k)sign (6" (k—1)x (k) +
w4922 (87 (k=) (k) | (R)] +
+y"M(1=1)(6" (k1) (k))sign (6" (k—1)x

(B)f(0f +

v (=) [ (R)] ] (23)

Consider each term on the right-hand side of (23) taking
into account the statistical properties of signals and interfer-
ence. In our case

(@ (k=1)2 () } =2 + o2 {1}
(6 (k1) (1)) [ (1)} =

:BGjM{Hé(k—i)" }+ oo,

REONE

The expression for

M7 (k—1)x(k)sign (6" (k—1)x(k))}

is analyzed by analogy with (14)

(24)

(25)

(26)

0" (k—1)x (k)51gn(~T(k—1)x(k))}=

(27)

Similarly, we obtain



M6 (k=15 (B)sign (6 (4= 1) (1) (] -

- 3Bc;M{||é(k —1) } (28)

Substituting the expressions (19), (24)—(28) in (23) and
simple transformations yield

~ 2 1-4yAc +2y(1-2)Bo?
S A &
+12y*A%t +12y* (1-1)o!

xM{"é(k)"z}+yz (1-1)’ No’o®. (29)

It follows from (29) that the procedure (7) will converge
in mean-square (the increment of the Lyapunov function will
be negative) if the following condition holds

1-4yAc® =2y(1-A)Bo> +

+12y"A[ (A +(1-1)Bo? ot <L e

5. Determination of maximum attainable (asymptotic)
values of parameter estimation errors and
identification errors

The above relation (29) allows obtaining an expression
for the asymptotic estimation error

~ 2
M{foc-)}-
_4AYA’No'or +v° (1- L) N(1-¢)o> +(1-A)c>
- A

;@3
where

A=4y\o’ +2y(1-1)Bo’ —
-12y’ANolo; [ A+(1-2)B].

It is assumed that in a stationary state
w{[p()f = na{foce-of = {fo)f |

Substitution of (30) into (11) yields an expression for the
asymptotic identification error.

The relations obtained give non-asymptotic and asymp-
totic estimates for the gradient least squares algorithm (A=1)
and gradient least absolute deviations algorithm (A=0). Thus,
the conditions of mean-square convergence (29) of the gradi-
ent least squares algorithm take the following form

1-4yAc> +12y"Bot| < 1.

Where we get the inequality for the parameter y

1
O<y<—s-,
! 30>

which coincides with the result obtained in [38].
Moreover, the asymptotic error is determined by the
relation

4y*No’o; + (1 —4yo’ + 12720i)6§
4yo’ (1-3y0?) '

m{fo()f }=

It follows that when identifying a stationary object
(oi:O) using this algorithm, the asymptotic estimation
error is determined as follows:

. YNo?

M{"e(oo)" }: o

1-3y07%

From the resulting expression, it can be seen that, to
ensure

fim b {6(e~1)] }=0

the parameter y should be selected as variable and tend to
zero with increasing k, that is, satisfy the Dvoretzky condi-
tions [39].

For the gradient least absolute deviations algorithm ob-
tained from (30) with (A =0), the inequality for y has the
following form

|t-21Bo?|<1,

where

1
O<y<—-.
"< Bo?

Substitution of (A=0) in (31) leads to the following

expression for the asymptotic error:
Y’No’ +(1 - 27[302)02

M) = e

From the last expression we obtain that for the asymp-
totic error in the stationary case (Gi =0), the following
relation is valid

Mol )= 35

i. e, to ensure

fim b {6(e—1)] }=0

the parameter y should also be selected as variable and
tend to zero with increasing n, i. e., satisfy the Dvoretzky
conditions.

We note that in [23, 24] the question of choosing the vari-
able mixing parameter A, that is A = k(k), was considered for
the case of symmetric distribution (k) (y(k) ~ N(O, Gj))

A (k)= Prob{y (k)> y,\ Jy(k)<-y,}= Qerfc[mk)'} _

Gy
|y(®)/5,
1 1 o
=2[=— —— e 2dx |,
l2 ! J2n ]

where &, is the standard deviation y(k) in the absence
of interference; y, is some positive number. Analysis of



this formula indicates that it is quite problematic to use in
fractice, since it contains a number of unknown quantities

y(k), Yy, O

6. Simulation of capabilities of investigated algorithms

For the experimental study of the capabilities of the algo-
rithm (7), identification of a linear object (FIR filter [25, 26])
was performed described by equation (1) with

0°=(1,234,54,321)".

When testing the robustness of the algorithms, indepen-
dent Gaussian interference with a much larger amplitude
was added to the output signal of the object to simulate
“outliers” in the system (impulse interference). An example
of such interference is shown in Fig. 1. The simulation results
are presented in Fig. 2—5. At the same time, graphs of the
model parameters adjustment are shown on the left, and iden-
tification error changes on the right. Fig. 2 reflects the result
of identification of a linear system with A=1 in (7) and no
measurement interference. Fig. 3—5 show the results of iden-
tification with impulse interference using the algorithm (7)
forx=1, 0.8, 0.6, respectively. When A=0, i. e., when using the
sign algorithm, the identification process diverges.
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Fig. 2. Simulation results with A=1in (7) and
no measurement interference:
a —result of parameters adjustment; b — identification error

From Fig. 1-5 it is seen that the use of the combined
functional (6) allows obtaining estimates that are robust
with respect to non-Gaussian (impulse interference). How-
ever, the question of choosing the optimal weighting param-
eter A remains open.
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Fig. 3. Simulation results with A=1in (7):
a — result of parameters adjustment; b — identification error
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Fig. 4. Simulation results with A=0.8 in (7):
a — result of parameters adjustment; b — identification error
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Fig. 5. Simulation results with A=0.6 in (7):
a — result of parameters adjustment; b — identification error



7. Discussion of the results of the study of
the identification algorithm of a non-stationary object
with non-Gaussian interference

The studies presented in the paper are a continuation and
development of previous studies described in [5-7]. In these
works, rigorous results were obtained for the Kaczmarz and
Nagumo-Noda algorithms in the identification of non-sta-
tionary objects under Gaussian interference. These results
were used to study the properties of the gradient algorithm
of identification of a non-stationary object with non-Gauss-
ian measurement interference.

As the research results showed, the use of the combined
functional for object identification under non-Gaussian
interference allows obtaining robust estimates. Conditions
of convergence of the gradient algorithm of identification
of a non-stationary object with non-Gaussian measurement
interference determined by the expression (30) were ob-
tained. In addition, the relation for the maximum attainable
(asymptotic) estimation error is derived as the formula (31).
As shown in the paper, the obtained relations yield the
non-asymptotic and asymptotic estimates for the gradient
least squares algorithm (A=1) and gradient least absolute de-
viations algorithm (A=0). The experimental results shown in
Fig. 1-5 indicate the effectiveness of the developed approach
and feasibility of using the combined functional in solving
practical problems.

The obtained estimates are fairly general and depend
both on the degree of object non-stationarity and on the
statistical characteristics of useful signals and interference.
In addition, expressions for the asymptotic values of the
parameter estimation error and asymptotic accuracy of iden-
tification are determined. Since these expressions contain a
number of unknown parameters (dispersion of signals 62 and
interference o and degree of object non-stationarity o),
estimates of these parameters should be used for their prac-
tical application. So, in on-line identification, it is possible to
apply any recurrent procedure for estimating them and use
the resulting estimates to refine the parameters included in
the algorithms. In off-line identification, the result obtained
after all calculations should be corrected. In addition, the as-
ymptotic values of the estimation error and identification ac-
curacy depend on the choice of mixing parameter A &[0,1].

It should be noted that the estimates obtained in this
paper allow the researcher, when solving practical problems,
to preliminarily evaluate the capabilities and efficiency of
this algorithm. However, the question remains of the optimal
choice of the value of mixing parameter A e [0, 1]. Therefore,
it seems important to conduct research in the direction of:

1) studying the effectiveness of the developed approach
in identifying non-stationary objects using a model differ-
ent from the first-order Markov model to describe non-sta-
tionarity;

2) establishing the dependence of the speed of the iden-
tification algorithm on the degree of non-stationarity of the
investigated object;

3) developing recommendations for choosing the optimal
value of mixing parameter A or rules for its correction;

4) studying the effectiveness of such an approach in
identifying objects in conditions of not only impulse interfer-
ence, but also interference, having, for example, asymmetric
distributions.

8. Conclusions

1 Conditions are determined and analytical estimates of
mean and mean-square convergence rate of the gradient al-
gorithm of identification of the parameters described by the
first-order Markov model with non-Gaussian measurement
interference are obtained.

2. Non-asymptotic and asymptotic estimates of estimation
accuracy and identification error values are obtained, which
allow determining the maximum attainable properties of the
algorithm. These estimates are quite general and depend both
on the degree of object non-stationarity o3, and statistical
characteristics of the signals &7 of interference ;.

3. It is shown that the asymptotic values of the estima-
tion error and identification accuracy depend on the choice
of mixing parameter Ae[0,1]. It is intuitively clear that
the efficiency of choosing this parameter depends on the
characteristics of the problem to be solved. Therefore, it is
not possible to develop general recommendations regarding
the choice. However, it seems advisable to develop recom-
mendations for choosing this parameter for a number of
distribution classes.
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