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1. Introduction

The identification problem is not only of interest in itself, 
but is also an integral part of the general optimization prob-
lem. Many problems of management, forecasting, pattern 
recognition, etc., are associated with the construction of a 
model of the following form:

( ) ( ) ( ),Ty k x k k∗= θ + ξ 		   (1)

where y(k) is the observed output signal; 

( ) ( ) ( ) ( )( )T

1 2, ,.. Nx k x k x k x k=  

is the input vector N×1; 

( )T

1 2, ,.. M
∗ ∗ ∗ ∗θ = θ θ θ  

is the vector of unknowns M×1; ( )kξ  is interference, and are 
reduced to minimizing some pre-selected quality functional 
(identification criterion).

However, the identification problem is significantly com-
plicated if the parameters θ change (drift) over time, i. e. 

( ) var.k∗θ =
The quadratic functional most widely used in practice 

leads to various identification algorithms that allow obtain-
ing estimates of the sought vector ∗θ  with normal interfer-
ence distributions, i. e. ( ) ( )20, .k N ξξ σ∼

Most of available identification methods are based on the 
use of strict and difficult to test conditions associated with 
the hypothesis of normality of the interference distribution 
law and justified by references to the central limit theorem. 
As is known, the normal law of distribution density describes 
interference present in measurements carried out under 
absolute stability of measurement conditions, the Laplace’s 
law having longer “tails” – interference occurring under 
maximum instability of conditions. Accordingly, identifi-
cation algorithms in the case of Gaussian interference are 
based on the least squares (LS) method, and in the case of 
interference distributed according to Laplace’s law, they 
are based on the least absolute deviations (LAD) method. 
Both of these methods are optimal in their conditions and 
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Розглядається задача iдентифiкацiї нестацiонар-
них параметрiв лiнiйного об'єкта, якi можна описати 
Маркiвською моделлю першого порядку, за наявнiстю 
негаусiвських завад. Алгоритм iдентифiкацiї є градiєнт-
ною процедурою мiнiмiзацiї комбiнованого функцiона-
лу. Комбiнований функцiонал, в свою чергу, складаєть-
ся з квадратичного i модульного функцiоналiв, ваги яких 
встановлюються за допомогою параметра змiшування. 
Така комбiнацiя функцiоналiв дозволяє отримати оцiн-
ки, що володiють робастними властивостями. Алгоритм 
iдентифiкацiї не вимагає знання iнформацiї про ступiнь 
нестацiонарностi дослiджуваного об'єкта. Вiн є найбiльш 
простим, тому що використовує при побудовi моделi 
iнформацiю тiльки про один такт (крок) вимiрювань. 
Застосування Маркiвської моделi є досить ефективним, 
оскiльки дає можливiсть отримати аналiтичнi оцiнки 
властивостей алгоритму. Визначено умови збiжностi 
градiєнтного алгоритму при оцiнцi нестацiонарних пара-
метрiв в середньому i середньоквадратичному за наявнi-
стю негаусовських завад вимiрiв.

Отриманi оцiнки є досить загальними i залежать як 
вiд ступеня нестацiонарностi об'єкту, так i вiд стати-
стичних характеристик корисних сигналiв i завад. Крiм 
того, визначено вирази для асимптотичних значень помил-
ки оцiнювання параметрiв i асимптотичної точностi iден-
тифiкацiї. У зв’язку з тим, що данi вирази мiстять ряд 
невiдомих параметрiв (значення дисперсiй сигналiв i завад, 
дисперсiї, що характеризує нестацiонарнiсть), для їх прак-
тичного застосування слiд використовувати оцiнки цих 
параметрiв. З цiєю метою слiд скористатися будь-якою 
рекурентною процедурою оцiнки невiдомих параметрiв i 
використовувати одержуванi оцiнки для уточнення тих 
параметрiв, якi входять в алгоритми. Крiм того, асимпто-
тичнi значення помилки оцiнювання i точностi iдентифiка-
цiї залежать вiд вибору параметра змiшування

Ключовi слова: Маркiвська модель, градiєнтний алго-
ритм, параметр зважування, рекурентна процедура, асим-
птотична оцiнка, точнiсть iдентифiкацiї

UDC 004.852

DOI: 10.15587/1729-4061.2019.181256



45

Mathematics and cybernetics – applied aspects

the solutions obtained with their help may vary greatly. 
Furthermore, since in practice these extreme cases are very 
rarely implemented, neither the Gauss’s law nor the Laplace’s 
law are usually fulfilled.

In this regard, it seems very relevant to develop an ap-
proach to robust estimation of non-stationary parameters 
using some combined functional, which allows combining 
LS and LAD.

2. Literature review and problem statement

To estimate non-stationary parameters, modified LS al-
gorithms (use of a sliding window or exponential smoothing, 
etc.), Kaczmarz algorithm proposed in [1] and its modifi-
cations, dynamic adaptation algorithms, etc. are common-
ly used. In particular, the Kaczmarz algorithm has been 
studied in sufficient detail in [2–6]. Modifications of this 
algorithm are associated with an increase in computational 
stability and improvement of dynamic properties. So, in [2], the 
modified (regularized) Kaczmarz algorithm was studied, in [3]  
its multi-step modification was considered, in [4] weighting 
of estimates to increase the speed of this algorithm was 
proposed. In [5], analytical expressions for asymptotic and 
non-asymptotic estimates were obtained and expressions for 
optimal values of the relaxation parameter of the Kaczmarz 
algorithm providing its maximum convergence rate were 
determined. In [6], a randomized version of the Kaczmarz 
method for consistent, overdetermined linear systems was 
proposed and it was proved that it converges at the expected 
exponential rate. In [7, 8], the efficiency of the Kaczmarz 
algorithm in estimating the non-stationary parameters de-
scribed by the first-order Markov model was studied.

It should be noted that both the algorithm and all the 
modifications mentioned are based on the use of quadratic 
identification (estimation) criterion, i. e., they are varieties 
of the least squares (LS) method. Being the optimal esti-
mation method with Gaussian interference, LS is not stable 
with non-Gaussian interference. This is because in this case 
the objective function can grow to infinity and outliers can 
become dominant dimensions that actually test the real 
model. Alternatively, to ensure robustness, the objective 
function is modified to limit the influence of the largest 
measurements. The main consequence of this is generally 
a lower convergence rate of optimization algorithms. This 
is due to the fact that distinguishing between outliers and 
useful measurements for the first time is very difficult. In 
this regard, some outliers can be filtered out, leading to a 
decrease in convergence rate. In the most difficult case, 
small but biased measurements move the minimum of the 
objective function.

If information about the affiliation of interference ξ  to a 
certain class of distributions is known, then by minimizing 
the optimal criterion, which is the inverse logarithm of the 
interference distribution function, the maximum likelihood 
estimate (M-estimate) can be obtained. If there is no such in-
formation, then to evaluate the desired parameter vector θ,  
one should apply some non-quadratic criterion that ensures 
the robustness of the resulting estimate. One of the criteria 
is modular criterion leading to a sign algorithm. Application 
of this criterion in the problem of object identification with 
impulse interference was considered in [9–12]. So, [9] stud-
ied the efficiency of the affine projection algorithm, [10] used 
the variable-gain affine projection algorithm. It should be 

noted that sign algorithms, providing robustness of the ob-
tained estimates, have a low convergence rate. Therefore, in 
order to accelerate the estimation process, a normalized sign 
identification algorithm was proposed and studied in [11]. 
[12] studies an easy-to-implement algorithm, which uses 
RMS error and estimated interference power to correct the 
step size. The theoretical results of its stationary behavior, 
obtained for the case of Gaussian input signals, are in good 
agreement with the experimental results. Similarly, [13] con-
siders the Kaczmarz algorithm with variable gain depending 
on the squared cross-correlation between the squared output 
error and adaptive model output and shows its effectiveness 
in solving some noise reduction problems.

There are a fairly large number of functionals that pro-
vide robust M-estimates. The most common are combined 
functionals proposed by Huber [14, 15] and Hempel [16, 17].  
They consist of a quadratic functional that ensures the 
optimality of estimates for the Gaussian distribution and 
modular one that allows obtaining a more robust estimate 
for distributions with heavy “tails” (outliers).

These functionals (ρ) and their influence functions (ψ) 
have the following form:

( )

2

1 2

,             ;
2

,   ;
2

e
e c

e
c

c e c e


≤ρ = 

 − <

 

( ) ( )1

,               ;

sign ,   ;

e e c
e

c e c e
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sign , ;

0, ,

e e b
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e b e d
e c e d

c d
d e

 ≤ <
 ≤ <ψ = −

≤ < −
≤

		   (3)

where e  is the estimation error.
It should be noted that M-estimates are usually de-

scribed by setting an influence function rather than a mini-
mized functional.

The Huber function ψ is monotonic, and the Hempel 
function ψ  is nonmonotonic. As noted in [18], with heavy-
tailed distribution, the use of nonmonotonic ψ functions 
improves the estimation results.

The effectiveness of these functionals depends on how 
well the constants a, b, c and d included in them are chosen, 
which determine the degree of interference immunity. In 
the above studies, it is recommended to choose the values a 
from the interval [ ], 2 ,σ σ  where σ  is the standard deviation 
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of observation x, and set the values b, c and d to 1.5, 3.5,  
and 8, respectively.

A modification of Huber estimates are the Mallows es-
timates [19]. Along with weighing of residuals ε, weighing 
of factors is performed, which makes it possible to reduce 
the influence of points that stand out sharply in the space of 
independent variables. To find the Mallows estimates, it is 
necessary to solve ρ+1 equations

( )
[ ]( )

[ ] [ ]( ) [ ]( )
1

1

;

, 0,1, ..., ,

n

i

n
x

m
i

i

x i x i i m

=

=


ψ εψ ε = 

 ψ ψ ε = ρ

∑

∑

where ψ is determined by Huber (2), and

[ ]( ) [ ]( )( )

1

.x j

j

x i x i
ρ

=

ψ = ψ∏

Due to the fact that the modular criterion provides an 
estimate that is less sensitive to interference distribution 
tails than the LS estimate, such a kind of modular criterion 
as A. Forsythe functional is of interest [20]

( ) ( ) ,F e k e k
λ

  =   		  (4)

where 0 2.< λ <  
Forsythe estimates (4) are close to Huber ones, yet lack 

such a convincing theoretical justification. It is empirically 
shown that λ=1.5 is acceptable. For λ=2, the Forsythe esti-
mates coincide with the LS estimates, and for λ=1 we obtain 
the least absolute deviations (modules) (LDA) method, 
which minimizes the functional

( )
1

.
k

i

Q i
=

= ε∑ 				    (5)

To obtain Merrill-Schweppe estimates, the functional 
[20] is used

( )
2

1

2

, ,

, ,

k

k

 γ ε ε ≤ρ ε = 
γ ε ε >

where 1 2>0, >0, 0 .kγ γ ≤
As follows from the above formulas and as noted above, 

the effectiveness of the obtained robust estimates substan-
tially depends on the numerous parameters used in the crite-
ria and selected based on the researcher’s experience.

The practical application of the considered functionals for 
solving the identification problem was considered in many 
works. In particular, in [21–24] the robust approach was 
applied to the identification of nonlinear systems. For this 
purpose, radial basis function networks [21, 22], evolving net-
works [23], and evolving radial basis function networks [24] 
were used. Learning of these networks was carried out on the 
basis of minimizing the robust functionals considered above.

Another approach to obtaining robust estimates devoid 
of this drawback is the use of a combined criterion.

A combined estimation criterion to accelerate the iden-
tification process using a combination of quadratic criterion 
and fourth degree criterion, proposed and studied in [25], was 
developed in [26–30]. [26] investigated the stability of the 

algorithm under Gaussian input signals. In [27], normaliza-
tion of the least mean fourth algorithm was proposed, which 
protects the algorithm from divergence when the input signal 
power increases and an approximate stability boundary of this 
algorithm was obtained. In [28], the problem of stability of the 
adaptive least mean algorithm was considered and normaliza-
tion of the update term of the weight vector using the fourth 
order in the regressor and the second order in the estimation 
error was proposed. This allows increasing the stability of the 
algorithm with increasing the dispersion of the input signal 
and the type of distribution of the input signal. [29] also stud-
ied the problem of increasing the stability of the least mean 
algorithm in the context of adaptive interference reduction 
and showed under what conditions the algorithm minimizing 
the fourth degree criterion is superior to the Kaczmarz algo-
rithm. In [30], the mean-square convergence of the least mean 
fourth algorithm for various cases, including non-Gaussian 
interference distributions, was analyzed. However, the anal-
ysis assumes the presence of a reference zero-mean Gaussian 
signal, which is not always possible.

In [31], the fourth degree criterion was replaced with the 
least absolute deviations criterion, which made it possible to 
ensure the robustness of the obtained estimates under im-
pulse interference conditions. The normalized modification 
of the identification algorithm considered in [32] was stud-
ied in [33, 34], where the presence of impulse interference 
was also taken into account.

In [35], the use of an adaptive combination of two nor-
malized filters to obtain robust estimates in the identifica-
tion problem was studied. It should be noted that this criteri-
on proved to be very effective and much easier to implement 
in the identification procedure.

3. The aim and objectives of the study

The aim of the work is to study the convergence of 
gradient algorithms of identification of non-stationary pa-
rameters described by the first-order Markov model under 
non-Gaussian interference and to determine parameters of 
the algorithms ensuring their maximum convergence rate.

To achieve the aim, the following objectives were set:
– to obtain analytical estimates of mean and mean-

square convergence of the gradient minimization algorithm 
of the combined functional;

– to determine the maximum attainable (asymptotic) 
values of parameter estimation errors and identification er-
rors in the considered conditions.

4. Obtaining analytical estimates of convergence of 
robust identification procedure

Note that to ensure robustness of the obtained esti-
mates, it is quite effective to use a combined learning func-
tional [31, 32]

( ) ( ){ } ( ) ( ){ }2 1 ,F e k M e k M e k  = λ + − λ  		  (6)

where 

( ) ( ) ( )
( ) ( ) ( )

ˆ1 1 1

ˆ1 1 ,T

e k y k y k

y k k x k

+ = + − + =

= + − θ +
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( )ˆ 1y k +  

is the output signal of the model; 

T
1 2

ˆ ˆ ˆ ˆ( ) ( ( ), ( ),.. ( ))Nk k k kθ = θ θ θ  

is the vector of estimated parameters 1;N ×  γ  is the param-
eter affecting the convergence rate of the algorithm; [ ]0,1λ ∈  
is the mixing parameter.

When using the combined criterion (6), the gradient 
minimization procedure has the following form

( ) ( )
( ) ( ) ( ) ( ) ( )

1

2 1 sign .

k k

k e k e k x k

θ = θ − +

 +γ λ + − λ   		  (7)

This procedure combines the properties of LS with those 
of LAD, since when 1λ =  (7) implies the LS algorithm, and 
when 0λ =  – LAD algorithm (5), and allows dealing with 
impulse interference. By varying the parameter λ, one can 
change the properties of the algorithm.

To obtain analytical estimates in the non-stationary 
case, it was assumed, like in [7, 8], that the non-stationary 
parameters of an object can be represented by a first-order 
Markov model

( ) ( ) ( )1 ,k k S kθ = θ − + 		   (8)

where 

( ) ( ) ( ) ( )( )T

1 2, .., NS k S k S k S k=  

is the vector of random sequence 1;N ×  ( )20, .i sS N∼ σ
We introduce the estimation error

( ) ( ) ( )ˆ .k k kθ = θ − θ� 		   (9)

It is assumed that components of the estimation error 
vector ( )kθ�  obey the normal distribution law with 

( ) ( ){ }i ik M kθ θ� ��

and dispersion ( )2
i kσ  [36], that is, all components of the estima-

tion vector ˆ ( )i kθ  are distributed according to the normal law 

( ) ( ) ( )( )2ˆ , ,i i ik N m k kθ σ∼  

with the probability density function 

( )( ) ( )
( ) ( )( )

( )
( ) ( )( )

( ) ( )( )
2 2

2 2

2

ˆ ˆ

2 2

1ˆ
2

ˆ ,

i i i i

i i

i

i

k m k k m k

k k
i

f k
k

e e U k

θ − θ +
− −

σ σ

θ = ×
πσ

 
 

× + θ 
 
 

 

where

( ) ( ) ( );i i im k k k= θ − θ�

( ) ( ){ } ( ){ }2 2 2 ;i i ik M k M kσ θ − θ� ��

( )( ) ( )
( )

ˆ0, 0,ˆ
ˆ1, 0.

i
i

i

k
U k

k

 θ <θ = 
θ ≥

The mean of this distribution is determined by the 
formula

( ){ } ( ) ( )( ) ( )

( ) ( )
( )

( )
( )
( )

2

22

2

ˆ ˆ ˆ ˆd

2
,

2

i

i

m k

ki
i i

i

M k k f k k

m k
m k erf k e

k

∞

−∞

−
σ

θ = θ θ θ =

 
= + σ 

  πσ 

∫

where 

( ) 2

0

2
d

x
terf x e t−

π ∫�  

is the Gaussian error function.
In view of (8), the expression for ( )e k  can be written as 

follows:

( ) ( ) ( ) ( ) ( ) ( )1 .T Tk k k ke x x kS k−= θ + + ξ� 	  (10)

Since it is assumed that ( ) ( )20, ,k N ξξ ∼ σ  we have

( ){ } ( ){ }22 2 2 ,xM e k M kξ= σ + σ θ�  		  (11)

where M is the symbol of mathematical expectation; •  is 
the Euclidean norm.

Consider the convergence of the procedure (7). To this 
end, we introduce the Lyapunov function ( ) 2

.kθ�
Given the accepted form of non-stationarity (3), the 

algorithm of identification errors ( )iθ�  can be written as 
follows

( ) ( ) ( ) ( ) ( ) ( )1 2 1 sign .k k e k e k x k θ = θ − − γ λ + − λ � �  	 (12)

Multiplying both sides of (12) on the left by ( ),T kθ�  tak-
ing into account that ( ) ( ) ( )1 ,Te k k x k= θ −�  we have

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 2 2

22 2 2

22

222

1 4

2 1 sign 4

4 1 sign

1 .

k k e k

e k e k e k x k

e k e k x k

x k

θ = θ − − γλ −

− γ − λ + γ λ +

+ γ λ − λ +

+γ − λ

� �

	 (13)

From (13) it can be seen that since 0,γ >  the increment 
of the Lyapunov function

( ) ( ) ( )2 2
1V k k k∆ = θ − θ −� �

will be negative if

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

2

2 2

2 2 1

2 1 .

e k e k

e k e k x k

λ + − λ >

> γ λ + − λ 	  (14) 

Thus, the convergence condition of the procedure (7) 
will hold if the parameter γ  satisfies the inequality

( )
( ) ( ) ( )( ) ( ) 2

2
0 .

1 sign

e k

e k e k x k
< γ <

λ + − λ
	  (15) 

The optimal value of the parameter γ  is determined 
from the equation obtained by differentiating (13) by γ  and 
equating the derivative to zero. Thus 
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( )( ) 2 .
1 sign

опт n

n n n

e

e e x
γ =

λ + − λ
		   (16)

We examine the statistical properties of the learning 
procedure (7) with measurement interference, i. e. 

( ) ( ) ( )* * ,Ty k x k k= θ + ξ  ( ) ( )20, .k Nξ σ∼  

Suppose that interference is not correlated with useful 
signals. Writing (7) regarding learning errors, we have (12).

Consider the expectation ( ){ }.M kθ�  Averaging both 
sides of (12), we obtain

 	 (17)

It’s easy to see that

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ){ } ( ){ } ( ){ }

1 1

1 1 ,

T T

T
xx

M k x k x k M x k x k k

M x k x k M k R M k

θ − = θ − =

= θ − = θ −

� �

� � 	 (18)

where xxR  is the correlation matrix of the input signal.
We consider in detail the expression 

( ) ( ) ( )( ) ( ){ }sign 1 .TM x k k x k x kθ −�

In this case, if the signal ( ) ( )20, ,xx k N σ∼  we have

( ) ( ) ( )( ){ }
( ) ( ) ( )( ) ( ){ }{ }

( ) ( ) ( )( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ } ( ){ }
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sign 1 | 1

2 1
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1 | 1
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e e

M x k k x k

M M x k k x k k

M M x k k x k k

M M x k x k k k

M x k x k k R M k

θ −

θ − =

= θ − θ − =

  = θ − θ − = π σ  
  = θ − θ − = πσ  

= θ − = θ −
πσ πσ

�

� �

	 (19)

where eσ  is the RMS value of the error ( ).e k
The expression (14) was obtained using Price’s theo- 

rem [37], according to which for two random Gaussian quan-
tities x and y with zero expectations, the following is true

{ } { }2 1
sign ,

y

M x y M xy=
π σ

where yσ  is the RMS value of y.
Taking into account the properties of interference

 ( ) ( ){ } 0M k x kξ =  

and expressions (13), (14), we have

( ){ } ( ){ } ( ){ }2 1 1 ,xx xxM k I R R M kθ = − γλ − γ − λ β θ −� � (20)

whence it follows that the procedure (7) will converge in 
mean if the parameter γ  satisfies the inequality

( )( )
2

0 .
2 1 xxtrR

< γ <
λ + − λ β

	  	 (21)

Here 

2

2
;

e

β =
πσ

 

xxtrR  is the trace of the matrix .xxR
Given the properties of the input signals, we can write 

the condition (21) as follows:

( )( ) 2

2
0 .

2 1 xN
< γ <

λ + − λ β σ
 		  (22)

Consider the Lyapunov function ( ){ }2
.M kθ�

Taking the mathematical expectation from both sides  
of (13), we have

( ){ } ( ) ( ) ( )( ){
( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) }

22 2

2 22 2
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222

1 4 1

2 1 1 sign 1

4 1

4 1 1 sign 1
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T

T T

T

T T

M k M k k x k

k x k k x k

k x k x k

k x k k x k x k

x k

θ = θ − − γλ θ − −

− γ − λ θ − θ − +

+ γ λ θ − +

+ γ λ − λ θ − θ − +

+γ − λ

� � �

� �

�

� �

 (23)

Consider each term on the right-hand side of (23) taking 
into account the statistical properties of signals and interfer-
ence. In our case

( ) ( )( ){ } ( ){ }2 22 21 1 ;T
xM k x k M kξθ − = σ + σ θ −�  	 (24)

( ) ( )( ) ( ){ }
( ){ }

2 2

24 2 4

1

3 1 ;

T

x x

M k x k x k

M k N ξ

θ − =

= σ θ − + σ σ

�

� 		   (25)

( ){ }2 2 .xM x k N= σ 		  (26)

The expression for 

( ) ( ) ( ) ( )( ){ }1 sign 1T TM k x k k x kθ − θ −�  

is analyzed by analogy with (14)

Similarly, we obtain

( ) ( ) ( ) ( )( ){ }
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( ) ( ) ( ) ( )( ) ( ){ }
( ){ }

2T T

24

1 sign 1

3 1 .x

M k x k k x k x k

M k

θ − θ − =

= βσ θ −

� �

� 	 (28)

Substituting the expressions (19), (24)–(28) in (23) and 
simple transformations yield

( ){ } ( )
( )

( ){ } ( )

2 2
2

2 2 4 2 4

2 22 2 2

1 4 2 1

12 12 1

1 .

x x

x x

x

M k

M k N ξ

 − γλσ + γ − λ βσ +
θ = × 

+ γ λ σ + γ − λ σ 

× θ + γ − λ σ σ

�

�  	 (29)

It follows from (29) that the procedure (7) will converge 
in mean-square (the increment of the Lyapunov function will 
be negative) if the following condition holds

( )
( )

2 2

2 4 4

1 4 2 1
1,

12 ( 1

x x

x x

− γλσ − γ − λ βσ +
<

 + γ λ λ + − λ βσ σ 
.	  (30)

5. Determination of maximum attainable (asymptotic) 
values of parameter estimation errors and  

identification errors

The above relation (29) allows obtaining an expression 
for the asymptotic estimation error

( ){ }
( ) ( ) ( )

2

22 2 2 2 2 2 2

M

4 1 1 1
,x x SN N A

A
ξ

θ ∞ =

γ λ σ σ + γ − λ − ε σ + − σ
=

�

	 (31)

where 

( )
( )

2 2

2 4 2

4 2 1

12 1 .

x x

x

A

N ξ

= γλσ + γ − λ βσ −

 − γ λ σ σ λ + − λ β 

It is assumed that in a stationary state 

( ){ } ( ){ } ( ){ }2 2 2
1 .M k M k Mθ = θ − = θ ∞� � �

Substitution of (30) into (11) yields an expression for the 
asymptotic identification error.

The relations obtained give non-asymptotic and asymp-
totic estimates for the gradient least squares algorithm ( 1λ = )  
and gradient least absolute deviations algorithm ( )0 .λ =  Thus, 
the conditions of mean-square convergence (29) of the gradi-
ent least squares algorithm take the following form

2 2 41 4 12 1.x x− γλσ + γ βσ <

Where we get the inequality for the parameter γ

2

1
0 ,

3 x

< γ <
σ

which coincides with the result obtained in [38].
Moreover, the asymptotic error is determined by the 

relation

( ){ } ( )
( )

2 2 2 2 2 4 2
2

2 2

4 1 4 12
M .

4 1 3
x x x S

x x

N ξγ σ σ + − γσ + γ σ σ
θ ∞ =

γσ − γσ
�

It follows that when identifying a stationary object 
( )2 0Sσ =  using this algorithm, the asymptotic estimation 
error is determined as follows:

{ }
2

2

2M ( ) .
1 3 x

N ξγ σ
θ ∞ =

− γσ
�

From the resulting expression, it can be seen that, to 
ensure 

( ){ }2
lim 1 0
k

M k
→∞

θ − =�  

the parameter γ  should be selected as variable and tend to 
zero with increasing k, that is, satisfy the Dvoretzky condi-
tions [39].

For the gradient least absolute deviations algorithm ob-
tained from (30) with ( 0λ = ), the inequality for γ  has the 
following form

21 2 1,x− γβσ <

where

2

1
0 .

x

< γ <
βσ

Substitution of ( )0λ =  in (31) leads to the following 
expression for the asymptotic error:

( ){ } ( )2 2 2 2
2

2

1 2
M .

2
x x S

x

Nγ σ + − γβσ σ
θ ∞ =

γβσ
�

From the last expression we obtain that for the asymp-
totic error in the stationary case ( )2 0 ,Sσ =  the following 
relation is valid

{ }2
M ( ) ,

2
Nγ

θ ∞ =
β

�

i. e., to ensure 

( ){ }2
lim 1 0
k

M k
→∞

θ − =�  

the parameter γ  should also be selected as variable and 
tend to zero with increasing n, i. e., satisfy the Dvoretzky 
conditions.

We note that in [23, 24] the question of choosing the vari-
able mixing parameter λ, that is ( ),kλ = λ  was considered for 
the case of symmetric distribution ( )y k  ( ) ( )( )20, yy k N σ∼

( ) ( ) ( ) ( )

( )
2

0 0

/

/2

0

{ } 2
ˆ

1 1
2 d ,

2 2

y

y

y k

x

y k
k Prob y k y y k y erfc

e x
σ

−

 
λ = > < − = = 

σ  
 
 = −
 π 

∫

∪

where ˆ yσ  is the standard deviation ( )y k  in the absence 
of interference; 0y  is some positive number. Analysis of 
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this formula indicates that it is quite problematic to use in 
practice, since it contains a number of unknown quantities 

( )( )2
0, , .yy k y σ

6. Simulation of capabilities of investigated algorithms

For the experimental study of the capabilities of the algo-
rithm (7), identification of a linear object (FIR filter [25, 26]) 
was performed described by equation (1) with 

( )T
1,  2,  3,  4,  5,  4,  3,  2, . 1∗θ =

When testing the robustness of the algorithms, indepen-
dent Gaussian interference with a much larger amplitude 
was added to the output signal of the object to simulate 
“outliers” in the system (impulse interference). An example 
of such interference is shown in Fig. 1. The simulation results 
are presented in Fig. 2–5. At the same time, graphs of the 
model parameters adjustment are shown on the left, and iden-
tification error changes on the right. Fig. 2 reflects the result 
of identification of a linear system with λ=1 in (7) and no 
measurement interference. Fig. 3–5 show the results of iden-
tification with impulse interference using the algorithm (7)  
for λ=1, 0.8, 0.6, respectively. When λ=0, i. e., when using the 
sign algorithm, the identification process diverges.

Fig. 1. Example of interference 

 
 
 
 
a  
 
 
 
 
 
 
 
 
b 

Fig. 2. Simulation results with λ=1 in (7) and  
no measurement interference:  

а –result of parameters adjustment; b – identification errorθ

From Fig. 1–5 it is seen that the use of the combined 
functional (6) allows obtaining estimates that are robust 
with respect to non-Gaussian (impulse interference). How-
ever, the question of choosing the optimal weighting param-
eter λ remains open.

 
 
a  
 
 
 
 
 
 
 
 
b 

Fig. 3. Simulation results with λ=1in (7):  
a – result of parameters adjustment; b – identification error

a  

b
 

Fig. 4. Simulation results with λ=0.8 in (7):  
a – result of parameters adjustment; b – identification error

a  

b
 

Fig. 5. Simulation results with λ=0.6 in (7):  
a – result of parameters adjustment; b – identification error
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7. Discussion of the results of the study of  
the identification algorithm of a non-stationary object 

with non-Gaussian interference

The studies presented in the paper are a continuation and 
development of previous studies described in [5–7]. In these 
works, rigorous results were obtained for the Kaczmarz and 
Nagumo-Noda algorithms in the identification of non-sta-
tionary objects under Gaussian interference. These results 
were used to study the properties of the gradient algorithm 
of identification of a non-stationary object with non-Gauss-
ian measurement interference.

As the research results showed, the use of the combined 
functional for object identification under non-Gaussian 
interference allows obtaining robust estimates. Conditions 
of convergence of the gradient algorithm of identification 
of a non-stationary object with non-Gaussian measurement 
interference determined by the expression (30) were ob-
tained. In addition, the relation for the maximum attainable 
(asymptotic) estimation error is derived as the formula (31).  
As shown in the paper, the obtained relations yield the 
non-asymptotic and asymptotic estimates for the gradient 
least squares algorithm (λ=1) and gradient least absolute de-
viations algorithm (λ=0). The experimental results shown in 
Fig. 1–5 indicate the effectiveness of the developed approach 
and feasibility of using the combined functional in solving 
practical problems.

The obtained estimates are fairly general and depend 
both on the degree of object non-stationarity and on the 
statistical characteristics of useful signals and interference. 
In addition, expressions for the asymptotic values of the 
parameter estimation error and asymptotic accuracy of iden-
tification are determined. Since these expressions contain a 
number of unknown parameters (dispersion of signals 2

xσ  and 
interference 2

ξσ  and degree of object non-stationarity 2
Sσ ), 

estimates of these parameters should be used for their prac-
tical application. So, in on-line identification, it is possible to 
apply any recurrent procedure for estimating them and use 
the resulting estimates to refine the parameters included in 
the algorithms. In off-line identification, the result obtained 
after all calculations should be corrected. In addition, the as-
ymptotic values of the estimation error and identification ac-
curacy depend on the choice of mixing parameter [ ]0,1 .λ ∈

It should be noted that the estimates obtained in this 
paper allow the researcher, when solving practical problems, 
to preliminarily evaluate the capabilities and efficiency of 
this algorithm. However, the question remains of the optimal 
choice of the value of mixing parameter [ ]0,1 .λ ∈  Therefore, 
it seems important to conduct research in the direction of:

1) studying the effectiveness of the developed approach 
in identifying non-stationary objects using a model differ-
ent from the first-order Markov model to describe non-sta-
tionarity;

2) establishing the dependence of the speed of the iden-
tification algorithm on the degree of non-stationarity of the 
investigated object;

3) developing recommendations for choosing the optimal 
value of mixing parameter λ  or rules for its correction;

4) studying the effectiveness of such an approach in 
identifying objects in conditions of not only impulse interfer-
ence, but also interference, having, for example, asymmetric 
distributions.

8. Conclusions

1 Conditions are determined and analytical estimates of 
mean and mean-square convergence rate of the gradient al-
gorithm of identification of the parameters described by the 
first-order Markov model with non-Gaussian measurement 
interference are obtained.

2. Non-asymptotic and asymptotic estimates of estimation 
accuracy and identification error values are obtained, which 
allow determining the maximum attainable properties of the 
algorithm. These estimates are quite general and depend both 
on the degree of object non-stationarity 2 ,Sσ  and statistical 
characteristics of the signals 2

xσ  of interference 2.ξσ
3. It is shown that the asymptotic values of the estima-

tion error and identification accuracy depend on the choice 
of mixing parameter [ ]0,1 .λ ∈  It is intuitively clear that 
the efficiency of choosing this parameter depends on the 
characteristics of the problem to be solved. Therefore, it is 
not possible to develop general recommendations regarding 
the choice. However, it seems advisable to develop recom-
mendations for choosing this parameter for a number of 
distribution classes.
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