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Розроблено послідовний рекурсивний алгоритм фільт
ра Калмана для фільтрації даних в області шумів від
мінних від гаусовського розподілу для використання 
у вимірювальній техніці. Відмінною рисою розробле
ного алгоритму фільтра Калмана для фільтрації да 
них з негаусовськими шумами є відсутність необхідно
сті апріорного визначення статистичних характерис
тик шуму.

Була перевірена працездатність розробленої мето
дики фільтрації Калмана шляхом обробки різних законів 
розподілу: шумів Коші, Парето, нормального і логістично
го розподілів. Ефективність розробленої методики філь
трації підтверджується шляхом застосування фільтра 
при обробці експериментальних даних з різними законами 
розподілу шумів. Проведено апробацію розробленої мето
дики фільтрації Калмана для даних, отриманих експери
ментально з урахуванням суперпозиції законів розподілу 
шумів. Апріорна оцінка помилки фільтрації при кількості 
ітерацій більше 30 прагне до нуля.

Розроблена методика фільтрації з використанням 
фільтра Калмана може бути використана при прове
денні метрологічної атестації засобів вимірювальної 
техніки в умовах підприємства. В цій ситуації можливе 
зашумлення вимірювальної інформації різними шумами, 
в тому числі і тими, що не підкоряються закону розпо
ділу Гауса. Фільтр може бути використаний при оброб
ці даних систем контролю параметрів стану, що реалі
зуються за принципом порогового контролю величини.

Прикладним аспектом використання отриманого нау
кового результату є можливість розширення області 
застосування класичного фільтра Калмана в вимірю
вальній техніці. Це становить передумови для розробки 
універсального алгоритму фільтрації з використанням 
фільтра Калмана
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1. Introduction 

The Kalman filter is a series recursive algorithm that uses 
a dynamic system model adopted to provide an estimate. The 
resulting estimation can be significantly adjusted as a result 
of the analysis of each new measurement sample of sensor 
over a time sequence [1].

The classic Kalman filter is an equation for the calcula-
tion of the first and second moment of a posteriori probability 
density (vector of mathematical expectation and variance 
matrix, including mutual) under given constraints. Since for 
the normal probability density mathematical expectation 
and variance matrix fully assign a probability density, we can 
say that the Kalman filter calculates the a posteriori proba-
bility density of the state vector at each point in time. And 
it means that it fully describes the state vector as a random 
vector magnitude [2]. The estimated values for mathematical 
expectations in this case are the optimal estimates for the 
mean square error criterion, which actually predetermines 
wide application of the Kalman filter.

The Kalman filter is widely used to solve numerous 
general engineering and econometric applied problems in 

the fields with a widespread distribution of Gaussian noise 
(economic forecasting, electronics, measuring equipment, 
radio engineering and communications) [3, 4]. Development 
of statistical models for indicators of processes in technology 
and economy [5], forecasting and determining the dynamics 
of economic indicators [6], cleaning of signals of measuring 
and radio engineering from noise and interference [7] is 
solved now employing the Kalman filter. 

In a classic problem statement, the filter monitors a ran-
dom signal generated by a linear recursion with additive 
white noise. The observed process is a linear combination 
of the signal and other white noise [9]. The impact of noise, 
interference on all elements of a device causes the emergence 
of random unique deviations of separate points of the sta-
tic characteristic of the device [9]. In this case, an error of 
noise is a nonstationary random function of time. The most 
common normal (Gaussian) distribution in which the pro-
bability density of finding an object with the magnitude of 
attribute x depends on two parameters: the variance σ2 and 
the offset μ, equal to the mathematical expectation x.

However, the opinion of the universal applicability of 
the normal distribution is a very stable delusion. Statistical 



Mathematics and cybernetics – applied aspects

37

models and methods based on Gaussianity (in particular the 
estimates of confidence intervals for selective medium) are 
often applied without a basic check, by default [10]. 

Therefore, the task to develop an effective procedure for 
filtering using the Kalman filter in the field of noises that dif-
fer from the Gaussian distribution in order to apply it in mea-
suring instruments is a relevant scientific and applied task.

2. Literature review and problem statement

For the non-Gaussian noise, the most commonly used 
approach implies the approximation of noise applying the 
noise models, and the filters are then employed that exploit 
algorithms developed for the Gaussian noise models [11]. 

There are several varieties of the Kalman filter that differ 
in the approximations used to linearize dynamic models [12]:

– the extended Kalman filter (EKF) that applies to 
non-linear models, it performs the linearization through de-
composition into a Taylor series;

– the unscented Kalman filter (UKF) that is used in 
problems for which a simple linearization cannot be applied, 
it performs «linearization» using a sigma conversion.

Paper [13] proposes for a situation when the signals are 
often non-linear in dynamics and have an abnormal noise to 
use the extended Kalman filter. The effectiveness of deve-
lopment is confirmed for the case when the noise variance 
is not too large (that is, a linear approximation is adequate). 
However, authors of the study did not consider the region 
of noises, which are not characterized by parameters of the 
Gaussian distribution. That is why the developed extended 
Kalman filter can be applied for filtering the non-Gaus-
sian noise.

The author of [14], given the lack of filtering proce-
dure using the Kalman filter and the impossibility of its 
application to the non-Gaussian noise domain, synthesized 
a recurrent non-linear filter whose order is determined from 
the conditions for obtaining estimates at a rate of measure-
ments acquisition. The paper describes the Gaussian and 
linearized approximations to an arbitrary order filter, how-
ever, the problem on filtering the non-Gaussian noises was  
never solved.

In paper [15], authors note that modifications of the 
Kalman filter cannot solve the problems on the non-lin-
ear filte ring, as the filter is built on only two statistical 
characte ristics of a process: mathematical expectation and 
a cova riance function. This is due to the fact that the study 
addressed only the two specified statistical characteris-
tics of the filte ring process. In this case, the phenomena of 
superposition of distribution laws under which the given 
statistical characteristics do not characterize the noise pa-
rameters before and after filtering at all, were not taken into 
account in study [15]. However, there are data that suggest 
the possibility of obtaining the Kalman filter with nonlinear 
additional filters, which would make it possible to extend the 
scope of filter application in measurement technology [16]. 
We did not find any data in the scientific literature about 
implementing the Kalman filter that performs the filtering of 
the non-Gaussian noise. 

Therefore, the development of a procedure of filtering 
using the Kalman filter in the field of the non-Gaussian noise 
would substantially extend the scope of filter application:  
signal processing when conducting metrological certifica-
tion, control over parameters.

3. The aim and objectives of the study

The aim of this study is to develop an effective procedure 
of filtering using the Kalman filter in the field of noises that 
are different from the Gaussian distribution in order to apply 
it in measurement instruments.

To accomplish the aim, the following tasks have been set:
– to perform a comparative analysis of the laws of mea-

surement errors distribution employing the software that 
makes it possible to simulate the noise effect that is governed 
by the considered distributions;

– to test the effectiveness of the Kalman filtering proce-
dure by employing different laws of noise distribution;

– to verify the developed procedure of filtering for data 
obtained experimentally, with respect to the superposition of 
laws of noise distribution.

4. Investigating the Kalman filter in the  
field of noises that differ from the Gaussian  

distribution

Paper [17] reported a model of simple scalar implemen-
tation of the Kalman filter by the general-purpose program-
ming tools Python. Simulation confirmed the possibility 
for applying the developed software implementation of the 
adaptive Kalman filter to compensate for the effects of am-
plitude and phase distortions in a data transmission channel. 
The data abode by the Gaussian distribution. No study was 
conducted outside the Gaussian domain. 

To fulfill the tasks set in this work, the main challenge is 
the substantiated identification of laws for data measurement 
error distribution for the non-Gaussian noise.

From the standpoint of probability theory, the form of  
a numerical distribution law is characterized by its coun-
terexcess with a coefficient, which is determined by the 
standard deviation σ and the fourth central moment m4. 
According to the information theory, a distribution law is 
characterized by the value of entropy coefficient κ σ= D / . 
For all possible existing laws of distribution, the value of  
a psi coefficient ranges from 0 to 1, and k – from 0 to 2.076, 
which is why the identification of distribution laws for the 
non-Gaussian noise is conveniently considered in the (psi,k)-
plane, in which each law is identified by a certain point [18].

A comparative analysis and identification of the mea-
surement error distribution laws were carried out by means 
of Python. At present, Python is an ideal language in order 
to rapidly write different applications running on the most 
common platforms [19]. Python is a freely available software 
package, which enables wide use of development results. 

Result of the analysis is shown in Fig. 1. The chart dis-
plays the most common measurement error distribution laws 
divided into two groups.

The plane in the lower left corner shows the Pareto, Pois-
son, Cauchy law, and the upper right corner exhibits a group 
of laws, similar to the Gaussian laws by their information 
indicators.

The data represented on the plane can be complemented 
through the introduction of the unused distribution laws. 
To investigate the effect of the Kalman filtering, we selected 
four distribution laws, which are in extreme positions on 
the plane. For the further analysis, we selected the Pareto, 
Cauchy laws (extreme left) and the logistic and normal dis-
tribution (extreme right). 
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Fig.	1.	A	comparative	analysis	of	the	measurement	error	
distribution	laws:	 	–	uniform	distribution;		

	–	logistic	distribution;	 	–	normal	distribution;		
	–	Erlang	distribution;	 	–	Pareto	distribution;		

	–	Cauchy	distribution;	 	–	logistic	distribution-1;		
	–	Poisson	distribution

To study behavior of the Kalman filter model at different 
distributions of noise, we developed software that makes it 
possible to simulate noise exposure that is governed by the 
examined distributions.

We shall consider work of the scalar Kalman filter algo-
rithm when changing a constant. 

Because there is always a single constant, a system’s mo-
del can be represented in the form:

x x wk k k= +−1 ,  (1)

where хk is the prediction of system state at the current point 
in time; хk–1 is the prediction of system state at a preceding 
point in time; wk is the control influence. 

For a given model, the transfer matrix degenerates to  
unity, and the control matrix to zero. The measurement mo-
del takes the form:

y y vk k k= +−1 .  (2)

In model (2), νk is an error of measurement, which is 
characterized by a covariance matrix R, a posteriori matrix P 
for the accuracy of the estimate obtained and a variance of 
random process Q. 

For model (2), a measurement matrix converts into unity, 
while covariance matrices P, Q , R transform into varian-
ces [20]. At the next k-th step, prior to receiving measure-
ment results, the scalar Kalman filter attempts, in line with 
formula (1), to estimate the new state of the system:

x x
k k k k/( ) ( )/( ).−
∧

− −
∧=1 1 1  (3)

Equation (3) shows that the a priori estimate at the next 
step is equal to the a posteriori estimate performed at the 
preceding step.

In this case, the a priori estimate of error variance is ex-
pressed by:

P P Qk k k k k/( ) ( )/( ). .− − −= +1 1 1  (4)

Base on the a priori estimate of state x
k k/( ),−
∧

1  it is possible 
to calculate the forecast of measurement:

y x
k k k
∧

− −
∧= ( )/( ).1 1  (5)

Once we have the next measurement of magnitude yk,  
the filter calculates the error of its own prediction for the  
k-th measurement from expression:

e y y y xk k k k kk
= − = −∧

−
∧
( )/( ).1  (6)

The filter adjusts its estimation of the state of the system 
by choosing a point located somewhere between the initial 
estimate x k k( )/( )−

∧
1  and the point that corresponds to the new 

measurement yk :

x x G e
k k k k k k/( ) ( )/( ) ,−
∧

− −
∧= +1 1 1  (7)

where Gk is the filter gain coefficient. The estimate of the 
error variance is also adjusted:

P G Pk k k k k/( ) ( )/( )( ) .= − −1 1  (8)

Thus, variance ek is equal to: 

P P Rk k k k k/( ) ( )/( ) .= +−1  (9)

The filter gain coefficient at which the minimum error 
in the estimation of the system’s state is reached, is derived 
from ratio:

G P Sk k k k= −( )/( ) / .1  (10)

We shall apply the resulting algorithm to evaluate the  
effectiveness of the Kalman filtering. Let us consider the 
work of the Kalman filter to suppress noise with the Pareto 
distribution. The Pareto distribution is a two-parameter fa-
mily of absolutely continuous distributions. 

The graphical part of evaluating the effectiveness of the 
Kalman filtering with the Pareto distribution is shown in 
Fig. 2. The data obtained indicate that the Kalman filter 
suppresses Pareto noises; a burst at the onset of filter’s work 
is explained by the limited distribution density of the random 
component [21]. 

Let us study effectiveness of the Kalman filter to suppress 
noise with the Cauchy distribution. The graphical part of 
evaluating the effectiveness of the Kalman filtering with the 
Cauchy distribution is shown in Fig. 3.

The Kalman filter suppresses Cauchy noises, a burst at 
the start is due to a random component distribution density. 

Filtering efficiency was examined using the developed 
scalar software implementation of the Kalman filter for two 
laws of distribution from the left bottom corner in the plane 
of law distribution based on indicators psi, k (Fig. 1). To 
draw a final conclusion about the possibility of applying the 
Kalman filtering to the non- Gaussian noise, we shall inves-
tigate the effectiveness of filter application for laws from the 
upper right corner in the plane of law distribution based on 
indicators psi, k (Fig. 1). 

Let us consider work of the Kalman filter to suppress 
noise with a normal distribution. The density of a normal 
distribution is determined from ratio:

f x

x

( )

exp

.=
−







2

2

2p

The graphical part of evaluating the effectiveness of the 
Kalman filtering with a normal distribution is shown in Fig. 4.
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Let us consider work of the Kalman filter to suppress 
noise with a logistic distribution. In this case, the density of 
logistic distribution is derived from ratio:

f x
x
x

( )
exp( )

( ( ))
.=

−
− −1 2exp

The graphical part of evaluating the effectiveness of the 
Kalman filtering with a logistic distribution is shown in 

Fig. 5. The study on the applicability of the Kalman filter 
in the field of noise with the non-Gaussian distribution sug-
gests that the Gaussian noise distributions are suppressed 
by the Kalman filter with the same mistake as is the case for 
noises with Pareto or Cauchy distributions that are far from 
the Gaussian distribution. 

We shall verify the constructed filtering procedure em-
ploying data obtained experimentally.
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Fig.		2.	Graphical	part	of	evaluating	the	effectiveness	of	the	Kalman	filtering	with	Pareto	distribution:		
a – noise	suppression	errors	with	Pareto	distribution	(+	noisy	measurements;	 	–	a posteriori estimate;		

	–	true	value);	b – errors	in	suppressing	noise	with	Pareto	distribution

Fig.	3.	Graphical	part	of	evaluating	the	effectiveness	of	the	Kalman	filtering	with	Cauchy	distribution:		
a – noise	suppression	errors	with	Cauchy	distribution	distribution	(+	noisy	measurements;	 	–	a posteriori estimate;		

	–	true	value);	b – errors	in	suppressing	noise	with	Cauchy	distribution

Fig.	4.	Graphical	part	of	evaluating	the	effectiveness	of	the	Kalman	filtering	with	a	normal	distribution:		
a –	noise	suppression	with	a	normal	distribution	distribution	(+	noisy	measurements;	 	–	a posteriori estimate;		

	–	true	value);	b	–	errors	when	suppressing	noise	with	a	normal	distribution
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5. Experimental data filtering using the Kalman filter

We used in our research an array of data acquired when 
controlling weight. The data array is composed of 55 weight 
measurement values (kg). The measurements were carried 
out using a specially prepared non-standard weight with  
a certified weight of 0.175 kg. The measurements were per-
formed using a digital electronic scale with a vibro-frequency 
mechanical resonator under conditions of vibration and elec-
tromagnetic interference, distributed based on an unknown 
law or the superposition of laws.

y = [0.203, 0.154, 0.172, 0.192, 0.233, 0.181, 0.219, 0.153, 
0.168, 0.132, 0.204, 0.165, 0.197, 0.205, 0.143, 0.201, 
0.168, 0.147, 0.208, 0.195, 0.153, 0.193, 0.178, 0.162, 
0.157, 0.228, 0.219, 0.125, 0.101, 0.211, 0.183, 0.147, 
0.145, 0.181, 0.184, 0.139, 0.198, 0.185, 0.202, 0.238, 
0.167, 0.204, 0.195, 0.172, 0.196, 0.178, 0.213, 0.175, 
0.194, 0.178, 0.135, 0.178, 0.118, 0.186, 0.191].

Let us define the law of distribution of measurement 
errors in the specified sample; to this end, we map the re-
sults of its processing onto the plane of distribution laws in  
the psi, k coordinates (Fig. 6).
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Fig.	6.	A	comparative	analysis	of	the	distribution		
laws	of	experimental	data	error:	 	–	uniform	distribution;		

	–	logistic	distribution;	 	–	normal	distribution;		
	–	Erlang	distribution;	 	–	Pareto	distribution;		

	–	Cauchy	distribution;	 	–	logistic	distribution-1;		
	–	Poisson	distribution;	 	–	unknown	distribution

A comparative analysis reveals that the experimental 
sample have an error that is distributed based on the law 
close to the normal law. Thus, we can apply ratios for the 
normal distribution to the sample. We shall use the Kalman 
filter to suppress the normally distributed error of weight 
measurement (Fig. 7).
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Fig.	7.	Graphical	part	of	evaluating	the	effectiveness	of	the	
Kalman	filtering	for	experimental	data:	a –	noise	distribution	

(+	noisy	measurements;	 	–	a posteriori estimate;		
	–	true	value);	b –	errors	in	noise	suppression

Evaluation results confirm the effectiveness of the use 
of the developed software implementation of the Kalman 
filter for experimental data whose distribution is outside the 
Gaussian field. The a priori estimate for a filtering error when 
the number of iterations exceeds 30 tends to zero.

Fig.	5.	Graphical	part	of	evaluating	the	effectiveness	of	the	Kalman	filtering	with	a	logistical	distribution:		
a –	noise	suppression	with	a	logistical	distribution	distribution	(+	noisy	measurements;	 	–	a posteriori estimate;		

	–	true	value);	b	–	errors	when	suppressing	noise	with	a	logistical	distribution
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6. Discussion of results of studying the Kalman filter

The constructed serial recursive algorithm of the Kalman 
Filter to filter the data in the field of noises that differ from 
the Gaussian distribution computes the forecast for mea-
suring the magnitude with respect to the a priori estimate.  
A distinctive feature of a given filtering algorithm is the 
identification of a data measurement error distribution law 
for the non-Gaussian noises at the first stage. 

The suggested technique for the identification of a dis-
tribution law makes it possible to use the Kalman filtering 
algorithm when processing noisy data in the cases when a dis-
tribution law is unknown. The identification of a distribution 
law is carried out by determining the point that corresponds 
to a given distribution in the (psi, k)-plane.

The classic Kalman filter employs the calculated values 
for mathematical expectations, which serve the optimal esti-
mates for the mean square error criterion. In the case of data 
filtering in the field of the non-Gaussian noise distribution, 
the specified characteristics cannot be used, the consequence 
being the inapplicability of the Kalman filter.

The devised procedure of filtering using the Kalman filter 
could be used when executing the metrological attestation of 
measurement instruments under industrial conditions when 
there may be the noisy measuring information due to various 
noises, including those that are not governed by the Gaussian 
distribution law. The filter could be applied when processing 
the data from control systems over state parameters, imple-
mented on the principle of a magnitude threshold control.

The effectiveness of the developed filtering procedure is 
confirmed by testing the filter when processing experimental 
data with different laws of noise distribution. To obtain a ge-
neric Kalman filter, it is required to undertake a study aimed 
at the applicability of the filtering technique for data from 
aggregate and combined measurements, and to construct  
a filtering algorithm for the multi-channel Kalman filter.

9. Conclusions

1. Here we report the development of a filtering pro-
cedure using the Kalman filter for the non-Gaussian noise 
distribution. A special feature of the proposed technique 
is the procedure for the identification of a distribution law  
for data measurement errors for the non-Gaussian noises at 
the first stage.

Through the proposed technique for the identification 
of a distribution law, it has become possible to use the Kal-
man filtering algorithm when processing noisy data in the 
cases when a distribution law is unknown. The filtering of 
such noises using the Kalman filter has not been achieved  
previously. 

Its applicability was confirmed for the non-Gaussian 
distribution of noises, which has significantly expanded the 
scope of filter application.

2. We have proven the possibility of using the Kalman 
filter in measurement instruments when processing infor-
mation that is distorted by interference of different origins 
and levels. It is established that the developed Kalman fil-
ter could work in the field of noise with the non-Gaussian  
distributions.

The effectiveness of the devised filtering procedure was 
tested by employing various laws of noise distribution.  
A special feature of the developed recursive serial algo-
rithm of the Kalman Filter to filter data in the field of the 
non-Gaussian noise distribution is the absence of a need to 
determine a priori the statistical characteristics of noise.

3. We have verified the devised Kalman filtering proce-
dure for the experimentally obtained data with respect to the 
superposition of noise distribution laws.

The developed filtering procedure has proved effective 
in terms of experimental data. The a priori estimate for  
a filtering error when the number of iterations exceeds 
30 tends to zero.
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