Structural peculiarities and electrochemical properties of R_5M_3 (R = La, Gd; M = Ge, Sn) doped by lithium

Andrij STETSKIV¹*, Vasyl KORDAN², Ivan TARASIUK², Oksana ZELINSKA², Volodymyr PAVLYUK²

¹ Department of Chemistry, Ivano-Frankivsk National Medical University, Galytska St. 2, 76018 Ivano-Frankivsk, Ukraine

² Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

*Corresponding author. Tel.: +380-342-58272; e-mail: andrij_stetskiv69@mail.ru

Dedicated to Evgen I. Gladyshevskii (1924-2012)

Received March 27, 2014; accepted June 26, 2014; available on-line November 10, 2014

Ternary phases $R_5Li_xM_3$ were prepared in two ways, by melting and by electrochemical lithiation of the binary compounds R_5M_3 . They crystallize in the hexagonal Hf₅CuSn₃ structure type, an ordered superstructure of the Mn₅Si₃ type. Metallic type of bonding was suggested by the analysis of the interatomic distances and confirmed by electronic structure calculations. Electrochemical lithiation reactions of electrodes made of R_5M_3 alloys were studied in an organic electrolyte containing LiPF₆ salt, using the conventional charge-discharge technique, and the reaction products were analyzed by X-ray powder diffraction. The partially lithiated phase, $R_5Li_xM_3$ (where x < 0.4), appears to be a solid solution of Li in the initial structure of the binary compounds R_5M_3 .

Intermetallic compound / Crystal structure / Rare-earth elements / Lithium / Electrochemistry

Introduction

The binary compounds La₅Ge₃ [1], Gd₅Sn₃ [2] and Gd₅Ge₃ [3] crystallize in the hexagonal Mn₅Si₃ structure type [4]. Two polymorphic modifications of La₅Sn₃ are known; the room temperature modification [5] crystallizes in the tetragonal W_5Si_3 -type and the high-temperature modification [2] adopts the hexagonal Mn₅Si₃-type. The latter variant of R_5M_3 intermetallics (where R is a rare-earth element and M a main-group element) is characterized by two different sites occupied by R atoms, in Wyckoff positions 4dand 6g. The M atoms (Ge, Sn or Pb) are located in a second 6g site. Binary R_5M_4 and ternary R_5TM_3 phases (T = transition metal) can be formed from R_5M_3 (Mn_5Si_3 -type) by incorporation of M or T atoms into an additional site in Wyckoff position 2b. The hexagonal Ti₅Ga₄- and Hf₅CuSn₃-types, which are 'filled' versions of the Mn₅Si₃-type, are obtained in this case [6].

The new ternary Tb_5LiSn_3 compound, with a fully filled 2*b* site (Hf₅CuSn₃ structure type), was discovered during a systematic study of Tb–Li–Sn alloys [7]. The ternary compound La₅Li_xGe₃, formed by incorporation of up to x = 0.4 Li atoms into octahedral voids of binary La₅Ge₃, was observed in the La–Li–Ge system [8]. In the present work $R_5 \text{Li}_x M_3$ samples were prepared in two ways, by melting and by electrochemical lithiation. The effect of Li incorporation on the crystal structure and electrochemical properties of alloys with different rare-earth metals is discussed.

Experimental

Rare-earth (La and Gd), lithium, germanium and tin, all with a nominal purity of more than 99.9 wt.%, were used as starting materials. At the beginning, pieces of pure metals, corresponding to the overall composition $R_{55}\text{Li}_{10}M_{35}$, were pressed into pellets, enclosed in tantalum crucibles and placed in a resistance furnace with a thermocouple controller. The samples were heated from ambient temperature to 670 K at a rate of 5 K/min, and kept at this temperature for 2 days. After that, the temperature was increased to 1070 K over 1 h. The alloys were annealed at this temperature for 8 h and then slowly cooled to room temperature. After the melting and annealing procedures, the total weight loss was less than 2 %.

X-ray powder diffraction of the samples was carried out using URD-6 and HZG-4a powder

diffractometers (Cu $K\alpha$ -radiation). Rietveld refinements of the powder diffraction data were performed with the FullProf program [9].

Electrochemical insertion of lithium into the R_5M_3 binary phases was performed in Swagelok-type cells, which consist of a composite electrode containing 0.2 g alloy mixed with 15 wt.% carbon powder; as counter-electrode pure lithium metal was used. A separator soaked in electrolyte (1M LiPF₆ in ethylenecarbonate/dimethylcarbonate, Merck) was placed between the electrodes. The cycling was performed by a galvanostatic cycling procedure with a current rate of 0.1 C.

The electronic structure of the compounds was calculated using the tight-binding linear muffin-tin orbital (TB-LMTO) method in the atomic spheres approximation (TB-LMTO-ASA [10-12]) and experimental crystallographic data reported here. Exchange and correlation were interpreted in the local density approximation [13]. All the figures and graphics concerning electron structure calculations were generated using wxDragon [14].

Results and discussion

The powder diffraction patterns of the $R_{55}Li_{10}Ge_{35}$ and $R_{55}Li_{10}Sn_{35}$ alloys prepared by melting are similar to the powder patterns of the R_5M_3 binary phases, with some minor differences. We decided to examine the powder patterns of these samples more carefully, and refine them by the Rietveld method. The

crystallographic data obtained from the refinements (Tables 1 and 2) show that the $R_5 \text{Li}_x M_3$ compounds crystallize with the hexagonal Hf₅CuSn₃ type of structure (space group $P6_3/mcm$). In the structure of these compounds the lithium atoms occupy the same crystallographic position (2b) as the copper atoms in Hf₅CuSn₃. A projection of the unit cell of Gd₅Li_rSn₃ (as an example) and the coordination polyhedra of the atoms are shown in Fig. 1. The number of neighboring atoms correlates well with the size of the central atoms. The Gd atoms are enclosed in 14- and 17-vertex polyhedra, whereas the coordination polyhedra of the Sn atoms are pseudo Frank-Kasper polyhedra with CN = 13. The lithium atoms are incorporated into octahedrons with centered facets

La₅Li_rGe₃, Gd₅Li_rGe₃ and Gd₅Li_rSn₃ limited solid solutions were found along the R_5Ge_3 -Li and R_5 Sn₃-Li concentration sections. La₅Li_xGe₃ and $Gd_5Li_xGe_3$ (x = 0-0.4) solid solutions are formed by incorporation of up to 0.4 lithium atoms per formula unit into the empty octahedrons present in the binary phases. The lattice parameters within the homogeneity range of the solid solutions were determined and refined from powder diffraction data (Table 2). A general tendency to enlargement of the unit cell dimensions with increasing Li content in the structure was observed. A pure La₅Li_rSn₃ ternary phase was observed only in the samples with x = 0.4 and 0.5, whereas the alloys with x = 0.1 and 0.2 consisted of two phases: tetragonal binary La₅Sn₃ and hexagonal ternary La₅Li_xSn₃.

Table 1 Experimental details and crystallographic data for R₅Li_xSn₃.

Starting composition of alloys		La ₆₀ Li ₅ Sn ₃₅	$La_{62}Sn_{38}$	Gd ₆₀ Li ₅ Sn ₃₅	$Gd_{62}Sn_{38}$
Method of lithium incorporation		melting	electrochemical	melting	electrochemical
Composition from X-ray data		$La_{60}Li_6Sn_{34}$	$La_{60}Li_5Sn_{35}$	$Gd_{60}Li_6Sn_{34}$	Gd 60Li5Sn35
Formula		$La_5Li_{0.5}Sn_3$	La ₅ Li _{0.5} Sn ₃	Gd ₅ Li _{0.5} Sn ₃	Gd ₅ Li _{0.4} Sn ₃
Diffractometer; radiation		HZG-4a, Cu Kα	HZG-4a, Cu Kα	HZG-4a, Cu Kα	HZG-4a, Cu Kα
2θ range (deg.), number of points		20÷100, 1601	20÷100, 1601	20÷100, 1601	20÷100, 1601
Step size (deg.), counting time (s)		0.05, 20	0.05, 20	0.05, 20	0.05, 20
Structure type		Hf ₅ CuSn ₃	Mn_5Si_3	Hf ₅ CuSn ₃	Hf ₅ CuSn ₃
Space group		<i>P</i> 6 ₃ / <i>mcm</i>	<i>P</i> 6 ₃ / <i>mcm</i>	$P6_3/mcm$	<i>P</i> 6 ₃ / <i>mcm</i>
Pearson code		hP16+1	hP16	hP16+1	hP16+0.8
Unit cell dimensions:					
<i>a</i> (Å)		9.4456(2)	9.4443(3)	9.0458(2)	9.0416(2)
<i>c</i> (Å)		6.9694(2)	6.9677(2)	6.6097(1)	6.6053(1)
Reliability factors:					
$R_{\rm F}$ (%), $R_{\rm B}$ (%)		6.21, 7.34	7.11, 9.24	6.34, 7.86	8.34, 9.87
$R_{\rm p}$ (%), $R_{\rm wp}$ (%)		3.98, 7.09	5.54, 8.03	4.42, 6.49	5.63, 8.43
χ^2		2.86	4.17	3.17	4.56
Atomic parameters $(x \ y \ z)$:	<i>R</i> 1 4 <i>d</i>	$\frac{1}{3}\frac{2}{3}0$	¹ / ₃ ² / ₃ 0	¹ / ₃ ² / ₃ 0	¹ / ₃ ² / ₃ 0
	R2 6g	0.2363(1) 0 1/4	0.2361(2) 0 1/4	0.2371(2) 0 1/4	0.2384(3) 0 1/4
	Sn 6g	0.5997(2) 0 1/4	0.5993(3) 0 1/4	0.6001(2) 0 1/4	0.6004(4) 0 1/4
	Li 2b	000		000	000

A. Stetskiv *et al.*, Structural peculiarities and electrochemical properties of R_5M_3 (R = La, Gd; M = Ge, Sn) ...

Fig. 1 Projection of the unit cell of $Gd_5Li_{0.4}Sn_3$ and coordination polyhedra of the atoms.

Table 2 Lattice parameters of the R_5M_3 and $R_5Li_xM_3$ phases prepared by melting.

Formula	Prototype,	Space group	Lattice parameters, Å	
Tormula	Pearson symbol		а	С
La_5Ge_3	Mn ₅ Si ₃ , <i>hP</i> 16	P6 ₃ /mcm	8.9418(1)	6.8798(1)
$La_5Li_xGe_3 (x = 0.1)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8.9441(1)	6.8820(1)
$La_5Li_xGe_3 (x = 0.2)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	<i>P</i> 6 ₃ / <i>mcm</i>	8.9476(2)	6.8861(1)
$La_5 Li_x Ge_3 (x = 0.3)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	$P6_3/mcm$	8.9502(1)	6.9890(1)
$La_5Li_xGe_3 \ (x = 0.4)$	Hf ₅ CuSn ₃ , hP18	<i>P</i> 6 ₃ / <i>mcm</i>	8.9531(2)	6.8921(2)
Gd_5Ge_3	Mn_5Si_3 , $hP16$	$P6_3/mcm$	8.5488(1)	6.4391(1)
$Gd_5Li_xGe_3 \ (x = 0.1)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	$P6_3/mcm$	8.9513(1)	6.4430(1)
$Gd_5Li_xGe_3 \ (x = 0.2)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	$P6_3/mcm$	8.9539(1)	6.4471(1)
$Gd_5Li_xGe_3 \ (x = 0.3)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	$P6_3/mcm$	8.9564(2)	6.4506(1)
$Gd_5Li_xGe_3 \ (x=0.4)$	Hf ₅ CuSn ₃ , hP18	<i>P</i> 6 ₃ / <i>mcm</i>	8.9590(2)	6.4541(2)
La_5Sn_3 (rt)	W ₅ Si ₃ , <i>tI</i> 32	I4/mcm	12.748	6.344
La_5Sn_3 (ht)	Mn_5Si_3 , $hP16$	$P6_3/mcm$	9.435	6.961
$La_5 Li_x Sn_3 (x = 0.4)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	$P6_3/mcm$	9.4417(1)	6.9652(1)
$La_5 Li_x Sn_3 (x = 0.5)$	Hf ₅ CuSn ₃ , hP18	<i>P</i> 6 ₃ / <i>mcm</i>	9.4456(2)	6.9694(2)
Gd_5Sn_3	Mn_5Si_3 , $hP16$	$P6_3/mcm$	9.0305(1)	6.5942(1)
$Gd_5Li_xSn_3 \ (x=0.1)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	$P6_3/mcm$	9.0341(1)	6.5968(1)
$Gd_5Li_xSn_3 \ (x = 0.2)$	Hf_5CuSn_3 , $hP18$	$P6_3/mcm$	9.0376(2)	6.5996(1)
$Gd_5Li_xSn_3 \ (x = 0.3)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	$P6_3/mcm$	9.0384(1)	6.6021(1)
$Gd_5Li_xSn_3 (x = 0.4)$	Hf ₅ CuSn ₃ , <i>hP</i> 18	$P6_3/mcm$	9.0420(1)	6.6056(1)
$\mathrm{Gd}_{5}\mathrm{Li}_{x}\mathrm{Sn}_{3}\ (x=0.5)$	Hf ₅ CuSn ₃ , hP18	$P6_3/mcm$	9.0458(2)	6.6097(1)

An electronic structure model of Gd_5LiSn_3 with completely filled octahedrons was calculated using the tight-binding linear muffin-tin orbital (TB–LMTO) method in the atomic spheres approximation (TB– LMTO–ASA). The experimental crystallographic data refined here were used for the calculations. As seen from Fig. 2, positive charge density is observed around the Gd atoms and negative charge density is accumulated around the Sn atoms, because the rareearth and Li atoms donate electrons to the tin atoms. The dominant type of bonding in this compound is metallic. The total density of states (DOS) for Gd_5LiSn_3 (Fig. 2) in the valence band region below the Fermi level, $E_{\rm F}$, exhibits significant mixing of Gd and Sn states. In the region above $E_{\rm F}$, contributions of f- and d-orbitals of Gd and p-orbitals of Sn are observed. The Sn s-type states are mainly located close to the lower valence band (at $-8.0 \,\text{eV}$). Crystal orbital Hamilton population (COHP) and integrated crystal orbital Hamilton population (iCOHP) calculations were used to make a quantitative evaluation of the bonding strength between the different types of atom. It can be concluded from the COHP data that the strongest interactions in the structure of Gd₅LiSn₃ are between Gd and Sn atoms.

Fig. 2 Electronic localization function (A), isosurfaces (B) and total density of states (C) for ordered Gd_5LiSn_3 .

The performance of binary R_5M_3 electrodes in Li-ion batteries was tested in half-cells against metallic lithium as the counter electrode, with 1M LiPF₆ in ethylenecarbonate/dimethylcarbonate as standard electrolyte. The voltage profiles for the first and the second cycles (Fig. 3a) show plateaus that confirm the incorporation of lithium into the binary R_5M_3 phases. Reversible Li-insertion was corroborated by the results of cyclic voltammetry. (Fig. 3b). The reversible charge/discharge reaction can be written as: $xLi^+ + R_5M_3 + x \bar{e} \leftrightarrow Li_3R_5M_3$.

The anode material was analyzed by X-ray powder

diffraction after several charge-discharge cycles (Table 1). The partially lithiated phase, $\text{Li}_x R_5 M_3$ (where x < 0.5) appears to be a solid solution of Li in the basic crystal structure of the $R_5 M_3$ binary phase. During the lithiation of La₅Sn₃, stabilization of the hexagonal modification was observed.

Acknowledgements

Financial support of the Ministry of Education and Science of Ukraine is gratefully acknowledged.

Fig. 3 Discharge (a) and cyclic voltammetry (b) plots for La₅Li_xSn₃.

References

- [1] J. Arbuckle, E. Parthé, *Acta Crystallogr.* 15 (1962) 1205-1207.
- [2] W. Jeitschko, E. Parthé, Acta Crystallogr. 22 (1967) 551-555.
- [3] E.I. Gladyshevskii, V.V. Burnasheva, *Inorg. Mater.* 1 (1965) 1374-1377.
- [4] G.H. Lander, P.J. Brown, *Philos. Mag.* 16 (1967) 521-542.
- [5] G. Borzone, A. Borsese, R. Ferro, Z. Anorg. Allg. Chem. 501 (1983) 199-208.
- [6] W. Rieger, E. Parthé, *Monatsh. Chem.* 96 (1965) 232-241.
- [7] A. Stetskiv, I. Tarasiuk, R. Misztal, V. Pavlyuk, *Acta Crystallogr. E* 67 (2011) i61.

- [8] V. Pavlyuk, A. Stetskiv, B. Rozdzynska-Kielbik, *Intermetallics* 43 (2013) 29-37.
- [9] J. Rodriguez-Carvajal, *Physica B* 192 (1993) 55-69.
- [10] O.K. Andersen, *Phys. Rev. B* 12 (1975) 3060-3083.
- [11] O.K. Andersen, O. Jepsen, *Phys. Rev. Lett.* 53 (1984) 2571-2574.
- [12] K. Andersen, Z. Povlovska, O. Jepsen, *Phys. Rev. B* 34 (1986) 51-53.
- [13] U. von Barth, L. Hedin, J. Phys. C: Solid State Phys. 5 (1972) 1629-1642.
- [14] B. Eck. wxDragon 1.6.6. Aachen. Available from: http://www.ssc.rwth-aachen.de; 1994-2010 [07.04.2013].