Copper(I) complexes with 3,3'-iminodipropanenitrile and 3-(diallylamino)propanenitrile: synthesis and crystal structure of σ -[{(NH(H⁺)(C₂H₄CN)₂}Cu₃Cl₄] and π -, σ -[Cu((C₃H₅)₂NC₂H₄CN)ClO₄] compounds

Mykhaylo LUK'YANOV^{1*}, Evgeny GORESHNIK², Oleksiy PAVLYUK¹, Maryan MYS'KIV¹

 ¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, UA-79005 Lviv, Ukraine
 ² Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

* Corresponding author. Tel.: +380-32-2394506; e-mail: mishalukianov@gmail.com

Received December 17, 2012; accepted December 26, 2012; available on-line July 5, 2013

Starting from ethanolic water-propanolic solutions of 3,3'-iminodipropionitrile or (L1).3-(diallylamino)propanenitrile (L2), and CuCl₃·2H₂O or Cu(ClO₄)₂·6H₂O, respectively, two complexes, $[(NH(H^+)(C_2H_4CN)_2Cu_3Cl_4]$ (I) and $[Cu((C_3H_5)_2NC_2H_4CN)ClO_4]$ (II), were obtained by the alternating current electrochemical technique and investigated by single crystal X-ray diffraction. The crystal structures of I and II are monoclinic, for I: space group $P2_1/n$, a = 8.9700(2), b = 14.3951(4), c = 10.0156(3) Å, $\beta = 94.056(1)^\circ, V = 1290.02(6)$ Å³, Z = 4; for II: space group Cm, a = 10.0916(8), b = 8.1061(7), c = 8.4207(7) Å, $\beta = 116.581(5)^\circ$, V = 616.03(5) Å³, Z = 2. The coordination of the Cu(I) atoms in complex I includes three Cl atoms and the N atom of a cyanogroup. Cations H^+L1 connect separate corrugated layers $(Cu_3Cl_4)_n$ into a framework.

The coordination environment of the copper(I) atom in complex II is formed by two C=C bonds of the allyl groups of one molecule L2, the nitrile N atom of another molecule L2, and the apical O atom of a ClO₄ anion. The inorganic anions ClO₄⁻ also interconnect the metalorganic ribbons via O...H-C hydrogen bonds.

Copper(I) / π- and σ-Complexes / Crystal structure / 3-Aminopropanenitriles / ac-Electrochemical technique

Introduction

Aminonitriles belong to a well-known class of organic compounds [1] that possesses a large number of interesting properties (antibiotic, pharmacological, etc. and potential biological [2-4])activity [5]. Polyfunctionally substituted aminonitriles are versatile reagents, which are utilized as precursors to substituted heterocyclic compounds [6,7]. Much less is known about Cu(I) coordination complexes with aminopropanenitriles and their allyl derivatives [8], all the more they show their usefulness as intermediates in the preparation of desired organic compounds.

Since copper(I) π,σ -complexes with β -aminonitriles derivatives are very particular and interesting, we decided to synthesize two π,σ -complexes of copper(I) chloride and perchlorate with 3,3'-iminodipropanenitrile and 3-(diallylamino)-propanenitrile, [(NH(H⁺)(C₂H₄CN)₂Cu₃Cl₄] (I) and [Cu((C₃H₅)₂NC₂H₄CN)ClO₄] (II), and investigate their crystal structure.

Experimental section

Synthesis of 3,3'-iminodipropanenitrile $(NH(C_2H_4CN)_2, L1)$

3,3'-Iminodipropionitrile was obtained from acrylonitrile (8.16 mL, 0.12 mol) and a 25% aqueous solution of NH₃ (5.6 mL, 0.06 mol). The mixture of reagents was continuously stirred and cooled (5 h, 20°C) preventing the temperature from rising higher than 30°C [9], then it was heated for 1 h in a water bath with a reflux condenser at 60°C. The product (dark orange liquid) was purified by distillation in vacuum produced by a water-jet pump (85°C, 40 mm Hg). The yield of *L1* was 80% (11 mL).

Synthesis of 3-(diallylamino)propanenitrile ((C₃H₅)₂NC₂H₄CN, L2)

To obtain 3-(diallylamino)propanenitrile a mixture of acrylonitrile (7 mL, 0.11 mol) and diallylamine

(16 mL, 0.13 mol) was heated with a reflux condenser in a water bath at 50-60°C for 8 h and then kept at room temperature for 24 h [10]. A small amount of unreacted initial substances was distilled off in vacuum produced by a water-jet pump; the red-orange liquid was distilled at 130°C (20 mm Hg). The yield of *L2* was 75% (13 mL).

Preparation of $[(NH(H^+)(C_2H_4CN)_2Cu_3Cl_4](I)$

Brown prismatic crystals of compound I appeared from an ethanol (3 mL) solution of CuCl₂·2H₂O (0.65 g, 3.8 mmol) and L1 (0.56 mL, 4.2 mmol titrated with 36% aqueous solution of HCl to pH = 4-4.5) under conditions of the alternating current electrochemical technique [11]. The initial solution was placed into a small test-tube and copper-wire electrodes in cork were inserted. After applying 0.5 V of alternating current (frequency 50 Hz) tension for 2 days crystals of I had formed on the copper electrodes. The yield of complex I was 65%.

Preparation of $[Cu((C_3H_5)_2NC_2H_4CN)ClO_4]$ (II)

Crystals of π -complex **II** were obtained in a similar way (alternating current, U = 0.45 V, $I_{init} = 0.4$ mA, time of synthesis 24 h) starting from a propanol-water (3:1) solution of 0.7 mL (4.3 mmol) of *L2* and 0.68 g (4 mmol) of Cu(ClO₄)₂ 6H₂O. The yield of complex **II** was 60%.

X-ray crystal structure determination

Single crystals of **I** and **II** were preliminarily studied by photographic methods and then diffraction data were collected on a Rigaku AFC7R diffractometer equipped with a Mercury CCD area detector using graphite monochromated Mo- $K\alpha$ radiation. The intensities were corrected for Lorentz and polarization factors.

The diffraction data were treated using the Rigaku CrystalClear software suite package [12]. Both structures were solved by direct methods using the SIR-92 [13] program (teXan crystallographic software package of Molecular Structure Corporation [14]) and refined on F^2 with SHELXL-97 [15] software implemented in the program package WinGX [16]. An absorption correction was applied by the analytical method [17].

The hydrogen atoms were in part found on a difference Fourier map. The thermal parameters of all the hydrogen atoms were fixed to 1.2 times U_{eq} of the C or N atoms. The positions of the hydrogen atoms were refined with geometrical restrictions.

The crystallographic parameters and summaries of the data collections for compounds **I** and **II** are presented in Table 1. Atomic positional and displacement parameters for **I** and **II** are given in Tables 2 and 3. The figures were prepared using DIAMOND 3.1 software [18].

Results and discussion

Compound **I** $[(H^+L1)Cu_3Cl_4]$ is one more representative of halide complexes of Cu(I) with derivatives of aminonitriles.

The coordination environment of the three crystallographically independent Cu(I) atoms is a distorted tetrahedron (Fig. 1). Each polyhedron is formed by three Cl atoms and one N atom of CN-group, interconnected through edges or a single apex. The coordination geometry of the metal atoms is given in Table 4.

Fig. 1 Fragment of the crystal structure of $[{NH^+(C_2H_4CN)_2}Cu_3Cl_4]$ (I). Symmetry codes: (*i*) -1/2+x, 1.5-y, -1/2+z; (*ii*) 1-x, 1-y, 2-z; (*iii*) 1/2+x, 1/2-y, -1/2-z; (*iv*) 1-x, -y, 3-z; (*v*) -1/2+x, 1/2-y, 1/2-z; (*iv*) 1-x, -y, 3-z; (*v*) -1/2+x, 1/2-y, 1/2-z; (*iv*) 1-x, -y, 3-z; (*v*) -1/2+x, 1/2-y, 1/2-z; (*iv*) 1-x, -y, 3-z; (*iv*) 1-x, 1/2-y, 1/2-z; (*iv*) 1-x, 1/2-y, 1/2-z; (*iv*) 1-x, -y, 3-z; (*iv*) 1-x, 1/2-y, 1/2-z; (*iv*) 1-x, -y, 3-z; (*iv*) 1-x, 1/2-y, 1/2-z; (*iv*) 1-x, -y, 3-z; (*iv*) 1-x, 1/2-y, 1/2-z; (*iv*) 1-x, 1-x, 1/2-y, 1/2-z; (*iv*) 1-x, -y, 3-z; (*iv*) 1-x, 1-x

Parameter	Ι	П
Empirical formula	$C_6H_{10}Cl_4Cu_3N_3$	$C_9H_{14}ClCuN_2O_4$
Formula weight	456.62	313.22
Temperature, K	200	200
Wavelength, Å	0.71069	0.71069
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, Cm
Unit cell dimensions		
a, Å	8.9700(2)	10.0916(8)
b, Å	14.3951(4)	8.1061(7)
$c, \mathrm{\AA}$	10.0156(3)	8.4207(7)
β , °	94.056(1)	116.581(5)
Volume, Å ³	1290.02(6)	616.03(9)
Ζ	4	2
Calculated density, g·cm ⁻³	2.351	1.689
Absorption coefficient, mm ⁻¹	5.70	1.99
<i>F</i> (000)	888	320
Crystal size, mm	$0.15 \times 0.10 \times 0.10$	$0.12\times0.10\times0.08$
Color, shape	Brown, prism	Colourless, chunk
Theta range for data collection, $^{\circ}$	1.4-29.0	2.7-27.1
	$-12 \le h \le 12,$	$0 \le h \le 12$,
Limiting indices	$-19 \le k \le 19,$	$-10 \le k \le 10,$
	$-13 \le l \le 13$	$-10 \le l \le 9$
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Measured reflections	10967	1232
Independent reflections	3000	711
Observed reflections $[I > 2\sigma(I)]$	2494	698
Free parameters	146	92
Weight scheme ^a	$[\sigma^{2}(F_{o}^{2}) + (0.1515P)^{2} + 1.3183P]^{-1}$	$[\sigma^{2}(F_{o}^{2}) + (0.0707P)^{2} + 2.108P]^{-1}$
Goodness-of-fit on F ²	1.24	1.2
Final <i>R</i> indices $[I > 2\sigma(I)]$	R = 0.078, wR = 0.266	R = 0.056, wR = 0.134
Residual electron density, e Å ⁻³	2.07 and -1.34	0.66 and -0.61

Table 1 Crystallographic data and experimental details for I and II.

Previous structural studies of halide complexes of aminonitrile indicate that the formation of metalhalide fragments of different complexity, from separate (Cu₂Cl₂) units to polymer anionic chains $(Cu_2Hal_3^{-n})_n$ for $C_3H_5NHC_2H_4CN$ (3-(allylamino)propanenitrile), or polymer anionic chains of $(CuHal_{2n}^{-)}$ for (C₃H₅)₂NC₂H₄CN (3-(diallylamino)propanenitrile), (HOC₂H₄)NHC₂H₄CN (3-[2-hydroxyethyl)amino]-(C₃H₅)(HOC₂H₄)NC₂H₄CN propanenitrile), (3-[2-hydroxyethyl)(allyl)amino]propanenitrile) [8,19], depends directly on the nature of the ligand. The use of 3,3'-iminodipropanenitrile (NH(C₂H₄CN)₂, L1) (in the molecule of which there are two closely situated propanenitrile groups) as a ligand allowed obtaining a complex with anion nets $(Cu_3Cl_4)_n$ (Fig. 2), which could not be achieved in the structure of CuCl with the 1,4-bis(2-cyanoethyl)piperazinediium $(NCC_{2}H_{4})(H^{+})NC_{4}H_{8}N(H^{+})(C_{2}H_{4}CN)$ cation (polyanionic chains (CuHal₂⁻)_n) [20].

Hydrogen bonds [21] additionally connect the organic and inorganic (C/N-H...Cl) parts of the structure of I into a single whole. Their role is also substantial in the strengthening of the structures of

complexes I-II, which is especially noticeable in the π -complex II (Table 5).

As we can see, 3,3'-iminodipropanenitrile in complex I serves only as bridging ligand. However, the presence of two equidistant cyanogroups theoretically gives it the opportunity to be a chelate ligand, *i.e.* it can be coordinated by two CN-groups to one atom of Cu(I). Chelating-bridging mode of coordination L is realized for the metal atom in complex II. The molecule of 3-(diallylamino)-propanenitrile connects neighboring Cu(I) atoms into an infinite coordination polymer by binding to one atom with two olefinic bonds, and to the second atom with a CN-group.

The π -complex [Cu{(C₃H₅)₂NC₂H₄CN}ClO₄] (**II**) is isostructural to the previously studied copper(I) tetrafluoroborate complex [Cu{(C₃H₅)₂NC₂H₄CN}BF₄] [20]. A trigonal pyramidal coordination of the copper(I) atom in complex **II** is formed by two C=C bonds of the allyl groups from one molecule *L*2, the N atom from a CN-group of the neighboring *L*2 molecule and the oxygen atom of the ClO₄ anion at the apical position.

^a $P = (F_o^2 + 2F_c^2)/3.$

parameters (A ⁻) fo	or I .			
Atom	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$ ^a
Cu(1)	0.61802(11)	0.63760(6)	0.69152(9)	0.0578(4)
Cu(2)	0.56025(12)	0.79713(7)	0.51388(11)	0.0690(4)
Cu(3)	0.42309(13)	-0.02120(8)	1.36260(10)	0.0709(4)
Cl(1)	0.83069(18)	0.68517(12)	0.84994(15)	0.0539(4)
Cl(2)	0.6995(2)	0.66141(12)	0.48154(16)	0.0560(4)
Cl(3)	0.33240(18)	0.06218(11)	1.54280(17)	0.0536(5)
Cl(4)	0.44387(19)	0.76541(11)	0.70894(16)	0.0528(4)
N(1)	0.5334(7)	0.5247(4)	0.7618(6)	0.0566(13)
N(2)	0.4286(7)	0.2379(4)	0.9885(5)	0.0500(12)
N(3)	0.3878(7)	0.0277(4)	1.1843(6)	0.0558(13)
C(1)	0.4784(8)	0.4618(5)	0.8069(7)	0.0545(15)
C(2)	0.4039(8)	0.3799(5)	0.8555(8)	0.0612(17)
C(3)	0.5100(8)	0.3177(4)	0.9351(7)	0.0539(14)
C(4)	0.3967(8)	0.1605(4)	0.8924(6)	0.0501(13)
C(5)	0.2917(9)	0.0890(5)	0.9489(7)	0.0585(16)
C(6)	0.3428(8)	0.0531(4)	1.0810(7)	0.0524(14)
H(1N)	0.3413	0.2586	1.0163	0.060*
H(2N)	0.4825	0.2154	1.0605	0.060*
H(2A)	0.3582	0.3457	0.7798	0.073*
H(2B)	0.3250	0.3993	0.9108	0.073*
H(3A)	0.5859	0.2952	0.8787	0.065*
H(3B)	0.5594	0.3523	1.0086	0.065*
H(4A)	0.4897	0.1304	0.8735	0.060*
H(4B)	0.3513	0.1851	0.8090	0.060*
H(5A)	0.1942	0.1173	0.9546	0.070*
H(5B)	0.2800	0.0373	0.8869	0.070*

Table 2 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2) for **I**.

^a For non-hydrogen atoms U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* (\vec{a}_i \vec{a}_j)$, for hydrogen U_{iso} was set equal to $1.2U_{eq}$ (C or N).

Table 3 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for II.

Atom	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$ a	Occ. (<1)
Cu(1)	0.97069(10)	0	0.63150(9)	0.0288(4)	
Cl(1)	0.5654(4)	1/2	0.2327(4)	0.0320(7)	
O(1)	0.4923(13)	1/2	0.0400(12)	0.042(2)	
O(2)	0.6580(12)	0.3579(10)	0.2978(12)	0.063(2)	
O(3)	0.4546(16)	1/2	0.2949(17)	0.077(5)	
N(1)	0.7545(13)	0	0.5056(14)	0.034(2)	
N(2)	0.3449(13)	0	-0.0831(13)	0.025(2)	
C(1)	0.6345(15)	0	0.4008(16)	0.027(3)	
C(2)	0.4844(15)	0	0.2551(16)	0.031(3)	
C(3)	0.4904(15)	0	0.0738(17)	0.032(3)	
C(4)	0.2609(9)	0.1514(10)	-0.0969(10)	0.0274(17)	
C(5)	0.1459(9)	0.1833(11)	-0.2841(10)	0.0273(16)	
C(6)	0.0114(11)	0.2573(11)	-0.3297(12)	0.0342(19)	
H(2A)	0.4315	0.0969	0.2635	0.038*	0.5
H(2B)	0.4315	-0.0969	0.2635	0.038*	0.5
H(3A)	0.5451	0.0965	0.0685	0.038*	0.5
H(3B)	0.5451	-0.0965	0.0685	0.038*	0.5
H(4A)	0.3287	0.2441	-0.0562	0.033*	
H(4B)	0.2127	0.1425	-0.0202	0.033*	
H(5)	0.1675	0.1504	-0.3757	0.033*	
H(6A)	-0.0141	0.2919	-0.2416	0.041*	
H(6B)	-0.0543	0.273	-0.4487	0.041*	

^a For non-hydrogen atoms U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} (\vec{a}_{i} \vec{a}_{j})$, for hydrogen U_{iso} was set equal to $1.2U_{eq}$ (C or N).

Fig. 2 Fragment of the crystal structure of $[{NH^{+}(C_2H_4CN)_2}Cu_3Cl_4]$ (I).

Bond	$d, \mathrm{\AA}$	Angle	ω , deg
Cu(1)–N(1)	1.946(6)	N(1)-Cu(1)-Cl(2)	127.8(8)
Cu(1)-Cl(2)	2.301(9)	N(1)-Cu(1)-Cl(4)	109.7(9)
Cu(1)-Cl(4)	2.428(9)	Cl(2)-Cu(1)-Cl(4)	101.6(7)
Cu(1)-Cl(1)	2.489(9)	N(1)-Cu(1)-Cl(1)	107.5(9)
Cu(2)-Cl(4)	2.325(8)	Cl(2)-Cu(1)-Cl(1)	105.3(4)
$Cu(2)-Cl(3)^{i,a}$	2.330(9)	Cl(4)-Cu(1)-Cl(1)	102.34(6)
Cu(2)-Cl(2)	2.354(8)	$Cl(4)-Cu(2)-Cl(3)^{i}$	126.40(8)
$Cu(2)-Cl(1)^{ii}$	2.554(9)	Cl(4)-Cu(2)-Cl(2)	103.11(7)
Cu(3) - N(3)	1.924(6)	$Cl(3)^{i}-Cu(2)-Cl(2)$	117.10(7)
Cu(3)-Cl(3)	2.360(9)	$Cl(4)-Cu(2)-Cl(1)^{ii}$	99.81(7)
$Cu(3)-Cl(3)^{iii}$	2.400(2)	$Cl(3)^{i}-Cu(2)-Cl(1)^{ii}$	94.87(7)
$Cu(3)-Cl(1)^{iv}$	2.502(2)	$Cl(2)-Cu(2)-Cl(1)^{ii}$	113.95(7)
$Cl(1)-Cu(3)^{\nu}$	2.502(2)	N(3)-Cu(3)-Cl(3)	118.7(8)
$Cl(1)-Cu(2)^{vi}$	2.554(8)	$N(3)-Cu(3)-Cl(3)^{iii}$	122.8(2)
$Cl(3)-Cu(2)^{i}$	2.330(9)	$Cl(3)-Cu(3)-Cl(3)^{iii}$	100.25(6)
$Cl(3)-Cu(3)^{iii}$	2.400(2)	$N(3)-Cu(3)-Cl(1)^{iv}$	105.4(7)
N(3)–C(6)	1.144(9)	$Cl(3)-Cu(3)-Cl(1)^{iv}$	112.82(7)
Cu(1)– $Cu(2)$	2.929(6)	$Cl(3)^{iii}$ - $Cu(3)$ - $Cl(1)^{iv}$	94.49(6)
$Cu(3)$ – $Cu(3)^{iii}$	3.052(2)	C(6)-N(3)-Cu(3)	168.7(6)

Table 4 Selected bond lengths and angles in the structure of I.

^a Symmetry codes: (*i*) -x+1, -y+1, -z+2; (*ii*) $x-\frac{1}{2}$, $-y+\frac{3}{2}$, $z-\frac{1}{2}$; (*iii*) -x+1, -y, -z+3; (*iv*) $x-\frac{1}{2}$, $-y+\frac{1}{2}$, $z+\frac{1}{2}$; (*v*) $x+\frac{1}{2}$, $-y+\frac{1}{2}$, $z-\frac{1}{2}$; (*v*) $x+\frac{1}{2}$, $-y+\frac{1}{2}$, $z+\frac{1}{2}$.

Bonds lengths: Cu(1)-m 2.035(4) (m - middle point of the C=C-bond), Cu(1)-N(1) 1.953(12), Cu(1)-O(3) 2.766(6) Å (Table 6).

Due to the chelate-bridging function of the L2 molecule, the structure of **II** consists of polymer metalorganic chains, in which the neighboring copper atoms are related by a symmetry plane n (Fig. 3). ClO₄-tetrahedra play a bridging role between separate (CuL⁺)_n-ribbons with the help of C-H...O contacts (Table 5) forming a 3Dframework. The replacement of the tetrafluoroborate Cu(II) salt by its perchlorate analogue leads in general to the formation of isostructural complexes. The cationic status of L^2 favors the appearance of [Cu(H⁺L)ClO₄]H₂O·ClO₄ and [Cu(H⁺L)BF₄]H₂O·BF₄ π -complexes [22], which crystallize in the monoclinic space group $P2_1/n$. The coordination behavior of *L* and co-ligands in these compounds is practically the same: up to now there is only one example of a non-isomorphic pair, [Cu(DAF)H₂O]BF₄ and [Cu(DAF)ClO₄] (DAF N,N-diallylformamid) [23].

No. Contact D. U. A		Bond length, Å			Angle D–H…A,	Atom coordinates
INO	Contact D–HA	D–H	HA	DA	deg	of A
	$C(2)-H(2A)\cdots Cl(2)$	0.97	2.63	3.488(9)	147	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1
	$C(2)-H(2B)\cdots Cl(3)$	0.97	2.79	3.566(8)	137	$-x+\frac{1}{2}, y+\frac{1}{2}, -z+\frac{5}{2}$
т	$C(3)-H(3B)\cdots Cl(3)$	0.97	2.74	3.475(7)	133	$x+\frac{1}{2}, -y+\frac{1}{2}, z-\frac{1}{2}$
1	$C(4)-H(4A)\cdots N(3)$	0.97	2.61	3.446(9)	145	-x+1, -y, -z+2
	$N(2)-H(1N)\cdots Cl(1)$	0.90	2.26	3.128(5)	161	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +2
	$N(2)-H(2N)\cdots Cl(4)$	0.90	2.37	3.163(6)	147	- <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +2
II	$C(4)-H(4A)\cdots O(1)$	0.97	2.55	3.516(8)	176	$-\frac{1}{2}+x$, $\frac{1}{2}-y$, $-1+z$
	$C(4)-H(4B)\cdots O(1)$	0.97	2.75	3.603(8)	147	$-\frac{1}{2}+x, -\frac{1}{2}+y, z$
	$C(5)-H(5)\cdots O(2)$	0.93	2.70	3.593(4)	159	$-\frac{1}{2}+x$, $\frac{1}{2}-y$, $-1+z$

Table 6 Selected bond lengths and angles in the structure of II.

Bond	<i>d</i> , Å	Angle	ω , deg
Cu(1)–N(1)	1.953(12)	$N(1)-Cu(1)-C(6)^{i}$	100.1(3)
$Cu(1)-m^{a}$	2.035(4)	$C(6)^{i}$ -Cu(1)-C(6) ^{<i>ii</i>}	158.6(5)
Cu(1)–O(3)	2.766(6)	$C(5)^{ii}$ -Cu(1)-C(5) ⁱ	86.3(5)
$Cu(1) - C(6)^{i, b}$	2.123(9)	$C(6)^{i}$ -Cu(1)-C(5) ⁱ	37.3(3)
$Cu(1) - C(6)^{ii}$	2.123(9)	C(1)-N(1)-Cu(1)	165.0(11)
$Cu(1) - C(5)^{i}$	2.171(8)	N(1)-C(1)-C(2)	175.4(14)
Cl(1)–O(2)	1.429(8)	C(6)-C(5)-C(4)	124.8(7)
Cl(1)–O(3)	1.432(12)		
Cl(1)–O(1)	1.451(10)		
N(1)–C(1)	1.136(17)		
C(5)=C(6)	1.373(12)		

^{*a*} m – middle point of the C(5)=C(6) bond;

^{*b*} symmetry codes: (*i*) *x*+1, -*y*, *z*+1; (*ii*) *x*+1, *y*, *z*+1; (*iii*) *x*, -*y*+1, *z*; (*iv*) *x*, -*y*, *z*; (*v*) *x*-1, *y*, *z*-1.

Fig. 3 Projection of the structure of $[Cu((C_3H_5)_2NC_2H_4CN)ClO_4]$ (**II**). Symmetry codes: (*i*) *x*, -*y*, *z*; (*ii*) -1+*x*, *y*, -1+*z*; (*iii*) -1/2+*x*, -1/2+*y*, -1+*z*; (*iv*) *x*, 1-*y*, *z*.

References

- [1] E.C. Taylor, A. McKillop, *The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles*, Interscience, New York, 1970, 415 p.
- [2] S.G. Davies, O. Ichihara, I. Lenoir, I.A.S. Walters, J. Chem. Soc., Perkin Trans. 1 (1994) 1411-1415.
- [3] M. Liu, M.P. Sibi, *Tetrahedron* 58 (2002) 7991-8035.
- [4] N. Krause (Ed.), *Modern Organocopper Chemistry*, Wiley-VCH Verlag, 2002. 392 p.
- [5] D. Steinhuebel, Y. Sun, K. Matsumura, N. Sayo, T. Saito, J. Am. Chem. Soc. 131 (2009) 11316-11317.
- [6] J. Tang, J. Li, L. Zhang, S. Ma, D. Shi, Q. Zhang, L. Yang, X. Wang, X. Liu, C. Liu, *J. Heterocyclic Chem.* 49 (2012) 533-542.
- [7] E.C. Taylor, J.G. Berger, J. Org. Chem. 32(8) (1967) 2376-2378.
- [8] M.Yu. Luk'yanov, A.V. Pavlyuk, M.G. Mys'kiv, Russ. J. Coord. Chem. 38(2) (2012) 86-91.

- [9] S.R. Buc, J.H. Ford, E.C. Wise, J. Am. Chem. Soc. 67 (1945) 92-94.
- [10] J. Houben, Die Methoden der organischen Chemie, Vol. 4, Thieme Verlag, Leipzig, 1941, 1546 p.
- [11] B.M. Mykhalichko, M.G. Mys'kiv, Ukraine Patent No. 25450A, Bull. No. 6, 1998.
- [12] CrystalClear: An Integrated Program for the Collection and Processing of Area Detector Data, Rigaku Corporation, 1997-2002.
- [13] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 26 (1993) 343-350.
- [14] *TeXan for Windows, Version 1.06: Crystal Structure Analysis, Package*, Molecular Structure Corporation, 1997-1999.
- [15] G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112-122.
- [16] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-238.
- [17] R.C. Clark, J.S. Reid, Acta Crystallogr. A 51(6) (1995) 887-897.

- [18] *DIAMOND v3.1*. Crystal Impact GbR, Bonn, 2004-2005.
- [19] M. Luk'yanov, V. Kinzhybalo, E. Goreshnik, A. Pavlyuk, M. Mys'kiv, *Chem. Met. Alloys* 5 (2012) 66-76.
- [20] M. Luk'yanov, E. Goreshnik, M. Mys'kiv, Visn. L'viv. Univ., Ser. Khim. 53 (2012) 50-59.
- [21] G.R. Desiraju, Angew. Chem., Int. Ed. 50 (2011) 52-59.
- [22] M.Yu. Luk'yanov, A.V. Pavlyuk, E.A. Goreshnik, M.G. Mys'kiv, *Russ. J. Coord. Chem.* 38(9) (2012) 639-645.
- [23] Ya.E. Filinchuk, V.N. Davydov, M.G. Mys'kiv, *Russ. J. Coord. Chem.* 27(7) (2001) 505-510.