398 HOBUHU CBITOBOI HAYKU

Maciej Panczyk'
IMPROVING COMPUTATION EFFICIENCY
BY PARALLEL PROGRAMMING

All modern computers are equipped with multi-core processors, and the majority of them also
have graphics cards for carrying out vector calculations. Every aspiring programmer should know
the techniques of parallel and distributed programming. The paper presents recent trends in pro-
gramming and applications using central and graphics processing units.

Keywords: parallel and distributed programming, GNU Parallel, Open M P, MPI.
Maueii ITanbunk

HNIIBUINEHHA EOEKTUBHOCTI PO3PAXYHKIB IUIAXOM
ITAPAJIEJIBHOT'O ITPOT'PAMYBAHHA

Y cmammi o62060peno npobaemy moeo, w0 6ci CyMacHi NepcoOHAAbHI KOMN fomepu 6xice
o0aaonani 6azamosoepHumu npouecopamu, oiavuicmo i3 HUX - i gideoKapmamu 0451 6EKMOPHUX
PO3DAXYHKIG, a KodceH npozpamicm mae Oymu 3Hatiomuil i3 mMemooamu RapaieibHozo i
posnodinenozo npoepamyeanns. Ilpedcmaesaeno cywacni mpenou 6 npoepamyeanti i dodamkax,
WO BUKOPUCMOBYIONb UESHMPAAbHUTL I epagiunuil npoyecopu 043 06poOKu OaHUX.

Karouoei caosa: napasenvre i poznodinene npoepamyeanns, ymunima GNU parallel, cmandapm
OpenMP, 6aecamonomouricme.

Mauyeii ITanpunk

ITOBBIINEHUE D®O®EKTNBHOCTU PACYETOB ITYTEM
ITAPAJVIEJIBHOT'O ITPOTPAMMMPOBAHU A

B cmamue o6cyncdena npob.aema mozo, umo éce cospemeHHbIe NEPCOHAAbHbIE KOMNbIOMEPbl
Yyarce 060py008ansL MHO20A0EPHLIMU NPOUECCOPAMU, OOABUUHCIIGO U3 HUX - U 8UdeOKapmamu 0451
6EKMOPHbBIX pacHemos, u Kaxcoovtii npozpammucm 004x4ceH 0Obimb 3HAKOM C Menooamu
napanieavhozo u pacnpeoeientnozo npoepammuposanus. Illpedcmas.aenvt coepemennvie mpenoot 6
HPOPAMMUPOBAHUU U RPUAONCEHUSIX, UCHOAb3VIOWUX UCHMPAAbHBLI U 2Padu“ecKuli npoyeccopsl
045 06pabomku OaHHbIX.
Karouesvie caosa: napanneasvnoe u pacnpedenenroe npoepammuposanue, ymuiuma GNU parallel,
cmandapm OpenM P, mnoconomourocmes.

Probably the less complicated way of programming using modern equipment is
to use the OpenMP standard for multiprocessor computers with common memory.
Today even the home network with a throughput of 1 Gbit allow using multiple
computers for calculations within a local network using the MPI (message passing
interface) standard. The use of even inexpensive graphics cards for calculations can
easily reach the performance of 0.5 TFlop. It should be remembered that few years
ago to achieve 1TFlop calculation speed required the construction of entire data
centers. CUDA (compute unifed device architecture), introduced by NVIDIA
enabled the use of advanced multiprocessor units such as graphics cards today.
OpenCL (open computing language) is a similar solution based on royalty free open
standard license.

! Lecturer, Faculty of Electrical Engineering and Computer Science, Institute of Computer Science, Lublin University of
Technology, Poland.

© Maciej Panczyk, 2013

HOBUHU CBITOBOI HAYKU 399

To demonstrate these technologies, we will use simple examples that do not
require special complicated numerical treatment, starting from an interesting and
simple modification of shell programming called GNU Parallel.

GNU Parallel. GNU parallel [PAR12] is an extension to shell tool dedicated to
executing jobs in parallel using one multiprocessor computer or more networking
computers. Its main task is to run jobs for each of the lines in the input. It has many
common options with xargs command.

Possibly the easiest usage is to group a few commands into one script. Here we
have a simple script which do three time (CPU) consuming actions - calculate
mdSsum for a big file, converts few images into one PDF file and compress another
file using bzip2 algorithm:

$ cat my script

mdSsum bigfile.iso

convert -density 300x300 °‘Is pic*.jpg’ holidays.pdf

bzip2 poster.pdf

That job can be spread into several processors simply by sending it to parallel via
pipe and done simultaneously:

$ cat my script | parallel

Another example - let's execute a simple script that runs 6 time sleep command
on a 6 core machine. File parallelsleep10.sh contains:

sleep 10

sleep 10

sleep 10

sleep 10

sleep 10

sleep 10

time command allows us to compare sequential and parallel execution:

$ time ./parallelsleep10.sh

real Im0.021 s

$ time cat parallelsleeplO.sh | parallel

real0m10.360 s

Compression of 6 files using bzip2 algorithm can be performed as before taking
input from stdin (standard input):

time seq 6 | parallel tar cvf BigFile{}.avi.tar BigFile{}.avi

BigFilel.avi

BigFile3.avi

BigFile4.avi

BigFile2.avi

BigFile6.avi

BigFile5.avi

real Om21.851 s

It is also possible to read them as a command line arguments:

time parallel tar xvjf {} ::: BigFile?.avi.tar.bz2

BigFile5.avi

BigFile3.avi

BigFile6.avi

ACTUAL PROBLEMS OF ECONOMICS, #3(141), 2013

400 HOBUHU CBITOBOI HAYKU

BigFile4.avi

BigFile2.avi

BigFilel.avi

real 1m36.823s

An important feature of GNU Parallel is the ability to run parallel jobs on mul-
tiple machines across a network. By using appropriate options it is possible send data
to a remote (fast) machines, to process it and to receive results in one line. To read
more about this useful and easy to use tools, it is recommended to visit the home of
the GNU Parallel, read articles [TAN11], [MAR10] or find many interesting exam-
ples on www.youtube.com.

OpenMP. OpenMP (open multiprocessing) [OMP12, KAR09, PAP06, CHAO1,
CHAO8] is an application programming interface for parallel programming on shared
memory multiprocessors. It runs on most operating systems and consists of a set of
compiler directives, a library of support functions, and environment variables that
influence run-time behavior. OpenMP works in conjunction with C, C++, and
Fortran. The core elements of OpenMP are the constructs for thread creation, work-
load distribution (work sharing), data-environment management, thread synchro-
nization, user-level runtime routines and environment variables.

Frequently used first program type "Hello World!" in OpenMP looks very famil-
iar. The only difference is compiler directives #pragma (used in C/C++).

#include <stdio.h>

int main(void) {

#pragma omp parallel
printf("Hello, world"\n");
return 0;

}

Listing. 1. Parallel program "hello_world" using OpenMP

To compile it using GCC it is necessary to add -fopenmp flag:

$gcc -fopenmp hello_world.c -0 hello_world

After defining number of threads equal to 2:

export OMP NUM THREADS=2

the result on a computer with 2 Cores and 2 threads is the following:

Hello, world!

Hello, world!

Next mid-level example (listing 2: program maximum) [SPI11] except previous-
ly used "#pragma omp parallel” defines a range of variables and uses two nice con-
structions: "#pragma omp for" and a barrier "#pragma omp critical" within parallel
section of code limited by { } braces. Parallel loop "for" divides its simultaneous exe-
cution between the declared number of threads, and then waits for the completion of
all threads which is forced by the critical section. The result of the program is to deter-
mine the maximum of function, as shown in Figure 1.

#include <stdio.h>

#include <math.h>

#include <omp.h>

#define N 10000001

float a[N];

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne3 (141), 2013

HOBUHU CBITOBOI HAYKU 401

main(){

int i,n=10000000; float max=0.0,tmp_max=0.0; double time;
#pragma omp parallel firstprivate(tmp_max) shared(max)

{ // beginning of parallel section

#pragma omp for

for (i=0;i<n;i++) a[i]=1.0*sin(i*2.0*M_PI/n)+0.5*sin(9.0*i*2.0*M_ PI/n);
time=omp_get wtime();

#pragma omp for nowait

for(i=0;i<n;i++) if(a[i]<tmp_max) tmp_ max=al[i];

#pragma omp critical

if(tmp_max<max) max=tmp_max;

} // end of parallel section

time=omp_get wtime()-time;

printf("time=%If\nmax = %f\n",time,max);

}

1.5

E '50 200 400 600 800 1000

Figure 1. Data set for program "maximum”

Listing 2. Program "maximum" which calculates in parallel maximum
of a given dataset using OpenMP [SPI11]
After compiling the program:
$ g++ -0 maximum -fopenmp maximum.cc
and declaring number of threads to 1:
$ export OMP_NUM_THREADS=1
program runs sequentially on one processor within 0.034221 seconds.
$./maximum
time=0.034221
max = -1.500000
Comparable execution for 6 threads on 6 core machine takes only 0.009229 sec-

onds:
$ export OMP_NUM_THREADS=6

ACTUAL PROBLEMS OF ECONOMICS, #3(141), 2013

402 HOBUHU CBITOBOI HAYKU

$./maximum

time=0.009229

max = -1.500000

The purpose of the above OpenMP programming examples was only to notice
that the transition from pure C/C++ programming into C/C + in OpenMP is not so
complicated. It relies upon fork/join parallelism. A master thread is executed as
sequential code until it reaches a parallel code segment. Then it forks other threads
which communicate each other via shared variables. In the end of parallel part these
threads synchronize, rejoining the master one.

MPI. MPI (message passing interface) [SPI11, KAR09, PAP06, MORO09,
GRO99, GLT99] is a library specification for message-passing, communication pro-
tocol which is standard for sending messages between processes running parallel pro-
grams on one or more computers. The standard defines the syntax and semantics of
a core of library routines for programs written C/C++ or Fortran programming lan-
guage. Sample implementations [QUI03] for those routines are MPICH [MCH12]
and OpenMPI [MPI12, HPC12].

First example - a simple program like "Hello World!", shows that MPI is based
on a group of functions which allows for communication between a set of processes
due to communicator objects which connect groups of processes in the MPI session.

#include <stdio.h>

#include <mpi.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int numprocs, rank, namelen;

char processor_name[MPI_MAX PROCESSOR NAME];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Get_processor _name(processor_name, &namelen);

printf("Hello, world! - from process %d out of %d on host %s\n", rank,

numMprocs, processor_name);

MPI_Finalize();

}

Listing. 3. MPI version of parallel program "hello_world"

To compile the above program (from listing 3.) written in C we need to execute:

mpicc -0 mpi_hello mpi_hello.c

To launch the parallel calculation we also need a special command:

mpirun -np 4 ./mpi_hello

where "-np 4" option tells the task to be executed on 4 processors.

The result of the "MPI Hello world" program is similar to OpenMP version ie.
each process prints its message on the screen:

Hello World! from process 0 out of 4 on serverl

Hello World! from process 1 out of 4 on serverl

Hello World! from process 2 out of 4 on server2

Hello World! from process 3 out of 4 on server2

Unlike OpenMP programs, these which use MPI functions can be executed not

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne3 (141), 2013

HOBUHU CBITOBOI HAYKU 403

only on a single multiprocessor machine but also simultaneously on many computers
which take part in the calculations.

The example presented below is similar to OpenMP "maximum" program (list-
ing 2) but MPI set contains reduction operation MPI_MAX which can choose the
maximum value from single thread and within multiple threads using MPI functions
MPI_Reduce and MPI_Reduce_scatter. That simplifies program code.

#include "mpi.h"

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv) {

int err = 0;

int *sendbuf, recvbuf[8], *recvcounts;

int size, rank, i, sumval;

MPI_Comm comm;

MPI_Init(&arge, &argy);

comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &size);

MPI_Comm_rank(comm, &rank);

sendbuf = (int *) malloc(size * sizeof(int));

for (i=0; i<size; i++)

sendbufli] = rank * (i+1);
fprintf(stdout, "[Rank %d]

sendbuf]0..7]=%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d\n", rank, sendbuf[0], send-
buf[1], sendbuf]2], sendbuf]3], sendbuf[4], sendbuf]5], sendbuf]6], sendbuf]7]);

fflush(stdout);

recvcounts = (int *)malloc(size * sizeof(int));

for (i=0; i<size; i++)

recvcounts[i] = 1;

recvbuf[0] = -1;

MPI_Barrier (comm);

MPI_Reduce_scatter(sendbuf, recvbuf, recvcounts, MPI_INT, MPI_MAX,
comm);

fprintf(stdout, "[Rank %d] recvbuf[0]=%2d\n", rank, recvbuf[0]);

fflush(stdout);

int send1[1] = {recvbuf]0]};

int reducel = -1;

MPI_Barrier (comm);

MPI_Reduce (sendl, &reducel, 1, MPI_INT, MPI_MAX, 0, comm);

fprintf(stdout, "[Rank %d] reducel=%2d\n", rank, reducel);

fflush(stdout);

MPI_Finalize();

return 0;

Listing. 4. MPI version of parallel program "maximum" which generates

and calculates maximum of a given dataset
The result of MPI program "maximum" is presented below:

ACTUAL PROBLEMS OF ECONOMICS, #3(141), 2013

404 HOBUHU CBITOBOI HAYKU

[Rank 5] sendbuf]0..7]= 5,10,15,20,25,30,35,40
[Rank 1] sendbufl0..7]=1, 2, 3,4, 5,6, 7, 8
[Rank 2] sendbuf[0..7]= 2, 4, 6, 8,10,12,14,16
[Rank 4] sendbufl0..7]= 4, 8,12,16,20,24,28,32
[Rank 6] sendbufl0..7]= 6,12,18,24,30,36,42,48
[Rank 0] sendbuf]0..7]= 0, 0, 0, 0,0, 0, 0,0
[Rank 7] sendbufl0..7]=7,14,21,28,35,42,49,56
[Rank 3] sendbuf[0..7]= 3, 6, 9,12,15,18,21,24
[Rank 1] recvbuf[0]=14
[Rank 7] recvbuf[0]=56
[Rank 4] recvbuf]0]=35
[Rank 5] recvbuf]0]=42
[Rank 3] recvbuf]0]=28
[Rank 2] recvbuf[0]=21
[Rank 0] recvbuf]0]= 7
[Rank 6] recvbuf[0]=49
[Rank 7] reducel=-1
[Rank 1] reducel=-1
[Rank 3] reducel=-1
[Rank 2] reducel=-1
[Rank 6] reducel=-1
[Rank 5] reducel=-1

|

|

[y S Y

[S B el B)

[Rank 0] reducel=56
[Rank 4] reducel=-1
Listing. 5. MPI version of parallel program "maximum" results
The last example is based on the MPICH documentation. It calculates the value
of 1 using the trapezoidal integration method:

]
T =j 4 5 ax
o1+x
The integration interval is split between the processors, each responsible for their
part of the integral. After the calculation, partial results are aggregated using the
MPI_Reduce function. The source of the program is presented below:
#include <stdio.h>
#include <math.h>
#include <mpi.h>
int main(int argc, char **argv) {
int my_rank,size;
int i,intervals;
double my_pi,pi,h,sum,x;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (my_rank==0)
{

printf("Enter the number of intervals: ");

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne3 (141), 2013

HOBUHU CBITOBOI HAYKU 405

scanf("%d",&intervals);
}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
h=1.0/(double)intervals;
sum=0.0;
for (i=my_rank; i<intervals; i+=size)
{ x=h*((double)i+0.5);

sum—+=4.0/(1.0+x*x);
}
my_pi=h*sum;

MPI_Reduce(&my_pi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

if (my_rank == ()

printf("pi=%.16f\n",pi);
MPI_Finalize();

}

Listing. 6. MPI program calculating

The result for 1000000 intervals is 3.1415926535898899 .

Second MPI program (listing 6.) calculates the value of 7 uses collective com-
munication. Collective functions involve communication among all the processes at
a process group. Function MPI_Bcast takes data from one node and sends it to all the
processes in the process group. MPI_Reduce function allows for reverse operation, it
takes data from all the processes in a group, performs an operation (such as summing
in our case or finding global maximum/minmum), and stores the results on one node.

Programming with MPI is more difficult than using GNU Palallel or OpenMP
standard nevertheless it is worth to understand its basics. For many common tasks it
is enough to use 6-25 functions.

Conclusion. In a brief article it is not possible to present all the possibility of mul-
tiprocessor computers usage or programming computers in a network which works at
a common task. Nevertheless, OpenMP and MPI are standards for parallel and dis-
tributed programming. In the era of multicore computers and computer networks,
these standards are essential for teaching programming. Typical course usually begins
with POSIX threads in C and some popular C++ threads libraries like Boost. That is
usually enough for one teaching subject. Next step is to use multi-threads in other
popular languages like Java. Nowadays architectures tend to integrate shared memo-
ry machines into clusters. That means that clusters use heterogeneous computing
mixing OpenMP and MPI. These techniques are used not only for sophisticated sci-
entific computing but in usual auction and shopping websites like eBay or Allegro
mentioned in the list of top 500 supercomputing centers.

Moreover, modern computers (not only clusters) use graphic cards for GPGPU.
GPGPU is general-purpose computing on graphics processing units, which handles
computation not only for computer graphics, but to perform computation in applica-
tions traditionally handled by the central processing unit. Second subject is to teach
GPGPU techniques like CUDA and OpenCL. Unfortunately, it violates the princi-
ple often treated as a canon of good programming saying that the algorithm should be
independent of the used equipment.

ACTUAL PROBLEMS OF ECONOMICS, #3(141), 2013

406 HOBUHU CBITOBOI HAYKU

Efficient calculation of PGPU requires the knowledge of processor construc-
tion. From this point of view, innovations such as the GNU Parallel is a very nice,
incentive, easy for use element to learn programming and general usage of modern
computers, or modern technical solutions at all as even cell phones already have
multi-core processors.

References:

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R. (2001). Parallel
Programming in OpenMP, Academic Press, San Diego, USA.

Chapman, B., Jost, G., van der Pas, R. (2008). Using OpenMP portable shared memory parallel pro-
gramming, MIT Press, Massachusets, USA.

GNU Parallel Homepage http://www.gnu.org/software/parallel/, accessed June 2012.

Gropp, W., Lusk, E., Skjellum, A. (1999). Using MPI: Portable Parallel Programming With the
Message-passing Interface Scientific and Engineering Computation, MIT Press, USA.

Gropp, W., Lusk, E., Thakur, R. (1999). Using MPI-2: Advanced Features of the Message-Passing
Interface, MIT Press, USA.

Karbowski, A., Niewiadomska-Szynkiewicz, E. (2009). Programowanie rownolegle i rozproszone,
Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.

Martin B. (2010). Leb w leb, LINUX Magazine, December, p.32-35.

http://en.wikipedia.org/wiki/OpenMP, accessed Jun 2012.

MPI Documents, http://www.mpi-forum.org/docs/docs.html, accessed Jun 2012.

MPICH2 home page, http://www.mcs.anl.gov/research/projects/mpich2, accessed Jun 2012.

Mordechai, B.-A. (2009). Podstawy programowania wspolbieznego i rozproszonego, WNT,
Warszawa.

Open Source High Performance Computing, http://www.open-mpi.org, accessed Jun 2012.

Paprzycki M., Stpiczynski P. (2006). A Brief Introduction to Parallel Computing, the first chapter of
the book: Handbook of Parallel Computing and Statistics, E.J.Kontoghiorghes Ed., Taylor & Francis.

Spiczynski P., Brzuszek M. (2011). Podstawy programowania obliczen rownoleglych, UMCS Lublin.

Tange O. (2011). GNU Parallel - The Command-Line Power Tool, ;login: The USENIX Magazine,
February, p.42-47.

Quinn, M. J. (2003). Parallel programming In C with MPI and OpenMP, McGraw Hill, Singapore.

CratTd Hapgiiua no peaakiiii 02.08.2012.

AKTYAJIbHI NTPOBJIEMW EKOHOMIKU, Ne3 (141), 2013

