UDC 617.581-089.23

TREATMENT PATIENTS WITH MEDIAL FRACTURES of the FEMORAL NECK. Degtiar A. B.

Summary. There were learned medical literature about treatment patients with medial fractures of the femoral neck. This analysis demonstrated that a lot of question are unsettled, so it is demanded education and improvement of surgical methods of patients treatment with medial fractures of the femoral neck.

Key words: medial fractures, endoprothesing.

Стаття надійшла 29.08.2010 р.

УДК 504.03

А.В. Малый, С.А. Олейник*, С.В. Линиченко**

ИСТОРИЯ ИЗУЧЕНИЯ ПЕДЕРИНА И ЕГО ТОКСИКОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА: ОБЗОР ЛИТЕРАТУРЫ

Национальная медицинская академия последипломного образования им. П.Л. Шупика (г. Киев)
*Национальный университет физического воспитания и спорта Украины (г. Киев)
**Киевский национальный университет технологии и дизайна (г. Киев)

Работа является фрагментом плановой НИР Научно-исследовательского института НУФВСУ «Скринінг методів біологічного впливу, які виявляють позитивний ефект при порушеннях метаболізму, зумовлених інтенсивними фізичними навантаженнями» (№ госрегистрации 0105U001391).

Десятки видов насекомых рода Paederus (Отряда Coleoptera [жесткокрылые, или жуки]) семейства Staphylinidae содержат токсические вещества, вызывающие повреждения кожи и глаз у человека и теплокровных животных. Педерин представляет собой токсическое вещество, полученное в чистом виде из Paederus fuscipes Curt семейства Staphylinidae. Это вещество обнаружено и в других насекомых рода Paederus. Однако до сих пор не известен орган насекомого, вырабатывающий педерин, и значение самого педерина в метаболизме насекомого.

Целью работы работы было обобщить данные научной литературы, касающиеся истории изучения педерина и близких к нему по свойствам веществ (псевдопедерин, кантаридин), и его токсикологических характеристик.

Выделение педерина и начало исследований его токсикологических и фармакологических свойств связывают с исследованиями, результаты которых представлены в публикациях [17,18,20,29,31,34,36-38,41,42,45,46,51-52].

Явления токсического воздействия различных видов *Paederus* на кожу (дерматиты) и глаза теплокровных животных и, в частности, человека, было отражено в многочисленных публикациях на всех континентах, начиная с первой работы Da Silva (1912 г.) [20].

Поражения кожи и глаз этими насекомыми приняли эпидемический характер, так что их стали рассматривать как экономическое и социальное явление. Указывалось на то, что в некоторых странах воздерживались от проведения сельхозработ (Центральная Америка, Африка) из-за огромного количества *Paederus* в местах их проведения, а также об имевших место эпидемиях, жертвами которых становились расквартированные в местах большой концентрации насекомых войска [2,48].

В литературе токсическое вещество, вызывавшее дерматиты, было названо кантаридином. Вместе с тем, некоторые авторы подчеркивали, что им не удалось выявить это вещество, характерное для различных видов жесткокрылых семейства *Meloidae* [37,38,40–42].

Повреждения кожи и глаз насекомыми вида *Paederus* были определены в литературе как дерматиты пузырьковые, дерматиты эритемно-пузырьковые, офтальмиты эндемические, вызванные ядом падерус, и т. д. Отсюда заболевания стали называть педерозами [27].

Проблема определения состава яда была решена, когда он был получен в чистом виде (в виде кристаллов) из *Paederus fusc. Curt.* Это вещество было впервые описано проф. М.Паван в 1953 г. и названо «педерином» (pederin) [42].

Но, несмотря на проведенные эксперименты, в новейших работах по медицинской энтомологии продолжало существовать мнение, что токсическое вещество, содержащееся в *Paederus*, может быть иден-

тифицировано как кантаридин или подобное ему. Это относится и к появившейся в 1961 году работе О.С. Степановой и соавт., в которой указывалось на наличие кантаридина в Paederus caligatus Er. (ближайшем «родственнике» Paederus fusc. Curt.) [49]. Это утверждение не может считаться полностью ошибочным. Однако сравнительные характеристики фармакологических и биологических эффектов педерина и кантаридина неопровержимо свидетельствуют о том, что это разные вещества. Кантаридин отсутствует у Coleoptera рода Paederus.

Одно насекомое вида $Paederus\ fuscipes$ весит в среднем 4 мг. Среднее количество педерина в одном насекомом составляет 1/4000 его массы $(0,25\,\%_{_{0}})$, или 1 мкг, причем наблюдается значительное отклонение от нормы в большую и меньшую стороны. В женских особях его содержится примерно в 10 раз больше нормы.

В ходе исследований по выделению педерина в *Paederus fuscipes* было обнаружено еще одно новое вещество, названное псевдопедерин (pseudopederidin) [47], однако в некоторых особях он вообще отсутствовал, или наблюдались только его следы. Было обнаружено и третье вещество, названное педерон (pederon) [14], содержащееся в количестве 0,5 мг на 1 кг насекомых, что составляет в среднем 0,002 мкг на особь.

В ходе биологических и химических исследований педерин был обнаружен в следующих видах насекомых: Paederus fuscipes Curt., P. melanurus Ar., P. litoralis Gravh, P. rubrothracicus Goeze (европейские виды, но P. fuscipes распространен также и в Азии), P. rufocyaneus Bernh. (Мозамбик), P. columbinus Cast. (Центральная Америка). Псевдопедерин был обнаружен в P. fuscipes. Педерон был обнаружен в P. fuscipes и P. columbinus. В нескольких десятках видов насекомых рода паредус отмечалось наличие токсического вещества, действующего подобно педерину.

Результаты основных исследований химической структуры педерина и его производных опубликованы в работах [1,7-18,21-26,28,47,53,54].

Для проведения исследования химической структуры педерина потребовалось 100 кг насекомых *P. fuscipes* (25 млн особей), которые были получены путем организации сбора насекомых десятками людей в сельской местности в Центральной Италии. Следует отметить, что во время этих работ, несмотря на все применяемые меры предосторожности, наблюдалось много случаев педероза, который протекал без осложнений.

Состав и структура педерина ($C_{25}H_{45}O_9N$) и псевдопедерина ($C_{24}H_{43}O_9N$) были предметом

первой публикации в 1961 году [47], полностью исследования были закончены в 1965-66 гг. [10,11] и в 1968 г. [25].

Было установлено, что педерин представляет собой вторичный амин, содержащий два тетрагидропирановых звена, метоксилы, два свободных вторичных гидроксила спирта и метиленовую шестицикличную группу на одном из тетрагидропирановых звеньев.

Из работ Quilico, Cardani, Chiringh и coтрудников видно, что педерин в результате гидролиза водой уксусного метоксила, содержащегося в первом звене теряет метанол и превращается в псевдопедерин [8-16,47]. (Следует при этом отметить, что данная реакция происходит даже в случае относительно непродолжительного соприкосновения с водой, так что возникают сомнения, содержится ли то небольшое и значительно отличающееся в разных особях количество псевдодедерина в организме насекомого или же псевдопедерин образуется в процессе экстрагирования.) Псевдопедерин под воздействием метоксида бария или пиперидина превращается в педеролактон и меропедероидную кислоту. Структура педеролактона, определенная методом озонизации и спектрографически, была подтверждена путём синтеза. Структура меропедероидной кислоты была определена методом кислотного гидролиза, в результате которого получился педеренал, который, в свою очередь, после озонирования и последующего гидролиза превращается в педелактон. Окисление педелактона при помощи перманганата, НІО, перед бромидным гидролизом, а также исследования спектра ЯМР позволили определить химическую структуру данного соединения и его производных.

Тот факт, что изопедеролактон был получен путем окисления псевдопедерина тетраацетатом свинца и интерпретация результатов гидрогенизации при помощи катализатора Адамса позволили точно определить положение СН₉= группы; получение диацетилпедерина без окисления и вторичное преобразование в педерин путем реакции восстановления при помощи LiAlH, подтвердили наличие двух звеньев; получение педерола из дигидропедерина и дигидропсевдопедерина методом кислотного гидролиза педолиевой кислоты из дигидродезоксипсевдопедерина методом того же кислотного гидролиза подтвердили предполагаемую структуру педерина, псевдопедерина и их гидропроизводных.

Возможно, работы по синтезу молекулы педерина, которые проводились в США и Японии [1,21,24,28,50], помогут не только уточнить строение его молекулы, но и разобраться в механизме его действия.

Дерматотоксическое действие (педерозы) у животных и человека. Педерин находится во всем теле насекомого, кроме органа размножения. Неизвестно, существует ли система выделения педерина из организма с целью защиты. На кожу теплокровных животных педерин оказывает действие, только при непосредственном контакте с кожей, например, если насекомое раздавить. Во время экспериментов многочисленные P, fuscipes находились в руках экспериментаторов в течение длительных периодов времени, не вызывая каких-либо нежелательных послелствий. В испражнениях насекомых также замечены следы педерина, что было доказано путем нанесения эфирного экстракта из испражнений на голову белой мыши.

Педерин не обладает ни инсектицидными, ни репеллентными свойствами. Жуки *P. fuscipes* поедают друг друга без каких-либо последствий. Личинки *P. fuscipes* также содержат биологически активные вещества в заметном количестве.

В многочисленных публикациях различных авторов описываются симптомы и протекание кожных и глазных заболеваний, вызываемых педерином [3-6,17-19,37].

При нанесении на кожу человека в небольших дозах (до 1 мкг) педерин вызывает легкое покраснение и временную пигментацию, но в случае большей дозы (например, 1 мкг, что соответствует содержанию в среднем педерина в одной особи *P. fuscipes*) через короткий промежуток времени проявляется местная реакция некротического типа с появлением волдырей и язв. Обычно при обработке антисептиками они быстро заживают, не оставляя следов в виде зарубцевавшихся тканей. Этот факт был подтвержден многократными наблюдениями за заживлением ран и язв, как полученных случайно, так и вызванных намеренно, причем язвы наблюдались на разных частях тела (лице, ногах, кистях рук и предплечьях). Данный тип кожной реакции, заключающийся вначале в некрозе тканей и подавлении их роста, а затем — в быстром заживлении и восстановлении тканей, дал направление в исследовании тормозящего и стимулирующего воздействия педерина на ткани растений и животных как in vitro, так и *in vivo*, а также на пораженные ткани человека (раны различного происхождения). Эта сторона вопроса была тщательно изучена итальянскими исследователями под руководством профессора М.Паван [30-44].

Так, например, была рассчитана DL_{50} педерина для белых мышей, которая при внутрибрющинном введении составляет $0.141~\mathrm{Mr/kr}$ [44].

Педерин является токсином. идентифицированным и выделенным из Раеderus fuscipes Curt семейства Staphylinidae. Характер его биологического действия дает основания для предположения о возможности его медицинского применения. Опыты в области синтеза этого вещества, его активных групп и возможность в будущем синтезировать педерин искусственно, причем с заданными свойствами, открывают широкое поле деятельности не только в теоретических исследованиях по биологии и медицине, но и в практическом их применении в медицине, ветеринарии, сельском хозяйстве.

В дальнейшем представляется целесообразным и перспективным провести анализ данных научной литературы, касающихся возможности медицинского применения педерина.

СПИСОК ЛИТЕРАТУРЫ

- Adams A. M. Total synthesis of (+)-Pederamide/A. M. Adams, A. J. Duggan, J. Smolanoff, J. Meinwald//J. Amer. Chem. Soc. — 1979. — Vol. 101. — P. 5364–5370.
- Armstrong R. K. Paederus fuscipes dermatitis. An epidemic on Okinawa/R. K. Armstrong, J. L. Winfield//Amer. J. Trop. Med. Hygiene. — 1969. — Vol. 18, № 1. — P. 147–150.
- Baccaredda A. Dermatite vescicobollosa stagionale prodotta da un coleottero (Paederus fuscipes Fam. Staphylinidae)/A. Baccaredda//Giorn. It. Derm. Sifil. — 1935. — № 6. — P. 1–40.
- Bo G. Differenziabilita del veleno di Paederus e di cantaride saggiati col test cutaneo/G. Bo//Tesi di laurea in Medicina.
 Pavia: Universita di Pavia, 1951. — P. 75.
- Bo G. Azioni biologiche della pederina. 1. Sull'azione cutanea della pederina e della cantaridina su uomo/G. Bo, M. L. Valcurone//Boll. Soc. Med. Chir. Pavia. — 1958. — Vol. 72, № 5-6. — P. 1-12.
- Bo G., Valcurone M.L. Azioni biologiche della pederina. 2. Lesioni cutanee e generali da pederina e cantaridina in topo albino e tentativi di terapia delle lesioni cutanee da pederina in topo/G. Bo, M.L. Valcurone//Boll. Soc. Med. Chir. Pavia. — 1958. — Vol. 72, № 5-6. — P. 1-10.
- Bonamartini C.A. The crystal and molecular structure of di-(p-bromobenzoyl) pederin monoethanolate/C.A. Bonamart ini, A. Mangia, M. Nardelli, G. Pelizzi//Gazzetta Chimica Ital. — 1971. — Vol. 101, № 7-8. — P. 591-605.
- Cardani C. The biosynthesis of pederin/C. Cardani//Tetrahedron Letters. — 1973. — № 30. — P. 2815–2818.
- Cardani C. Proprietes biologiques et composition chimique de la pederine/C. Cardani//Ann. Soc. Entomol. Fr. (N.S.). — 1965. — Vol. 1, № 4. — P. 813–816.
- Cardani C. The structure of pederin/C. Cardani//Tetrahedron Letters. — 1965. — Vol. 29. — P. 2537–2545.
- 11. Cardani C. Struttura della pederina/C. Cardani//Gazzetta Chim. Ital. 1966. Vol. 96. P. 3–38.
- Cardani C. On the methanolysis products of pederin/C. Cardani//Gazzetta Chim. Ital. — 1973. — Vol. 103. — P. 247–255.
- Cardani C. Chemical investigations on pederin/C. Cardani//I.U.P.A.C., Inter. Symp. on the Chemistry of Natural Products (Kyoto, 12–18 Apr.): Abstracts of papers. — Kyoto, 1964. — Abstr. 1.
- 14. Cardani C. The structure of pederone, a novel substance from Paederus (Coleoptera Staphylinidae)/C. Cardani C.//Tetrahedron Letters. — 1967. — № 41. — P. 4023–4025.

- 15. Cardani C. Sui pigmenti di Paederus fuscipes Curt./C. Cardani//Gazzetta Chim. Ital. — 1962. — Vol. 92. — P.
- 16. Cardani C. La pederine/C. Cardani//Advanced Study Institute on the Chemistry of Insects (September, 14-19, Villa Monastero, Varenna (Como, Italy)). — Villa Monastero, 1972. — P. 13.
- 17. Castelli A. Caratteristica affezione oculare acuta endemica provocata da insetti. (Nota preventiva)/A. Castelli//Boll. Soc. Med. Chir. Pavia. — 1934. — Vol. 12, № 1. — P. 77-83.
- 18. Castelli A. Oftalmozoosi endemica da «Paederus»/A. Castelli//Ann. Ott. Clin. Ocul. — 1935. — Vol. 63, N 3. — P. 204-228; № 4. — P. 241-262.
- 19. Castelli A. Ulteriori osservazioni in relazione alia oftalmozoosi da «Paederus»/A. Castelli//Boll. Soc. Med. Chir. Pavia. -1937. — Vol. 15, № 3. — P. 341-349.
- 20. Da Silva P. Le Paederus colombinus est vesicant/P. Da Silva//Arch. Parasit. (Paris). — 1912. — Vol. 15, № 3. — P.
- 21. Duggan A.J. Synthesis of ethyl 1,3,6-trioxaspiro [4,5] decane-4-carboxylate derivatives from -lactones [preparation of 2-methoxy-2-glycolamide-tetrahydro-2Hpyran; elaboration of pederamide side-chain]/A. J. Duggan, M. A. Adams, J. Meinwald//Tetrahedron Letters. — 1978. — № 45. — P. 4327-4330.
- 22. Furusaki A. The crystal and molecular structure of pederin dip-bromobenzoate/A. Furusaki, T. Watanabe, T. Matsumoto, M. Yanagiya//Tetrahedron Letters. — 1968. — № 60. — P. 6301-6304
- 23. Massarotti S. Preparazione di dendrolasina e pederina marcate con C¹⁴/S. Massarotti//Tesi di laurea in Chimica Biologica. — Pavia: Universita di Pavia, 1967. — P. 1–44.
- 24. Matsuda F. Total synthesis of (+)-pederine. A simple method for N-(1-methoxyalkyl)amides/F. synthetic Matsuda, M. Yanagiya, T. Matsumoto//Tetrahedron Letters. - 1982. — Vol. 23, № 39. — P. 4043–4046.
- 25. Matsumoto T. The partial structure of pederin/T. Matsumoto, S. Tsutsui, M. Yanagiya, S. Yasuda, S. Maeno, J. Kawashima, A. Ueta, M. Murakami//Bull. Chem. Soc. Japan. — 1964. — Vol. 37, № 12. — P. 1892–1893.
- 26. Matsumoto T. A revised structure of pederin/T. Matsumoto, M. Yanagiya, S. Maeno, S. Yasuda//Tetrahedron Letters. 1968. — № 60. — P. 6297-6300.
- 27. Maugeri S. Diffusione e prevenzione delle zoonosi/S. Maugeri, F. Candura//Atti II Congr. Naz. Medicina Rurale, 1964. — P. 57-191.
- 28. Meinwald J. An approach to the synthesis of pederin/J. Meinwald//Pure Appl. Chem. — 1977. — Vol. 49, № 9. — P. 1275-1290.
- 29. Netolitzky F. Eine neue Gruppe blasenziehender Kafer aus Mitteleuropa (Paederus, Staphylinidae)/F. Netolitzky//Zeitsch. Angew. Entomol. — 1919. — Vol. 5, № 2. — P. 252–257.

 30. Pavan M. Gli insetti come fonte di prodotti biologicamente
- attivi/M. Pavan//La Chimica e l'Industria. 1955. Vol. 37, № 8. — P. 714–724.
- 31. Pavan M. Su un recente lavoro sui Coleotteri vescicanti/M. Pavan//Boll. Soc. Ent. It. — 1957. — Vol. 87, № 7-8. — P. 131 - 133.
- 32. Pavan M. Significato chimico e biologico di alcuni veleni di insetti/M. Pavan. — Pavia: Tip. Artigianelli, 1958. — 75 p.
- 33. Pavan M. Su alcune proprieta biologiche della cantaridina e della norcantaridina/M. Pavan//Boll. Soc. Med. Chir. Pavia. — 1958. — Vol. 72, № 1-2. — P. 25-28.

- 34. Pavan M. Biochemical aspects of Insect poison/M. Pavan//IVth Internat. Congr. of Biochem. - London: Pergamon Press, 1959. — P. 15-36.
- 35. Pavan M. Sviluppi delle ricerche sulle secrezioni di insetti/M. Pavan//Atti Ace. Naz. It. Entomol., Rendiconti. — 1960. — Vol. 8. — P. 228-242.
- 36. Pavan M. Sunto delle ricerche chimiche, fisiche, biologiche e mediche sulla pederina estratta dal Coleottero Paederus fuscipes Curt./M. Pavan//Atti Ace. Naz. It. Entomol., Rendiconti. — 1962. — Vol. 10. — P. 119-124.
- 37. Pavan M. Ricerche biologiche e mediche su pederina e su estratti purificati di Paederus fuscipes Curt. (Coleoptera Staphylinidae)/M. Pavan. — Pavia: Ind. Lito-Tipografiche M. Ponzio, 1963. — 94 p.
- 38. Pavan M. Sunto delle attuali conoscenze sulls pederina: Pubbl. Ist. Entom. Univ. Pavia/M. Pavan. — Pavia, 1975. Vol. 1. — 35 p.
- 39. Pavan M. La pederina: proprieta chimiche, biologiche, terapeutiche di un veleno di origine entomologica: Atti XXI Congr. Naz. A.D.O.I. - Reggio Emilia, 1982/M. Pavan//Chron. Derm. — 1983. — Vol. 14, № 3. — P. 301–337.
- 40. Pavan M. Summary of the present data on pederin: Pubbl. Ist. Entom. Univ. Pavia./M. Pavan. — Pavia, 1982. — Vol. 23. — 61 p.
- 41. Pavan M. Ricerche sulla differenziabilita, natura e attivita del principio tossico di Paederus fuscipes Curt. (Col. Staph.)/M. Pavan, G. Bo//Mem. Soc. Ent. It. — 1952. — Vol. 31. — P. 67-82.
- 42. Pavan M. Pederin, toxic principle obtained in the crystalline state from the beetle Paederus fuscipes Curt./M. Pavan, G. Bo//Phys. Comp. Oecol. — 1953. — Vol. 3, № 2-3. — P.
- 43. Pavan M. Prospettive di controllo degli insetti nocivi con sostanze natural! agenti sul loro comportamento/M. Pavan, A. Quilico//Ace. Naz. Lincei. — 1969. — № 128. — P. 37–77.
- 44. Pavan M. Toxicology and pharmacology Arthropoda/M. Pavan, M. Valcurone Dazzini//Chemical Zoology. — New York, London: Academic Press, 1971. — Vol. 6. — P. 365-409.
- 45. Pavlovsky E.N. The cutaneous poison of the beetle, Paederus fuscipes/E.N. Pavlovsky, A.K. Stein//Trans. R. Soc. Trop. Med. Hyg. — 1927. — Vol. 20. — P. 450-451.
- 46. Pawlowsky E. N. Gifttiere und ihre Giftigkeit/E. N. Pawlowsky. - Jena: Gustav Fischer, 1927. — 516 s.
- 47. Quilico A. Pederina e pseudopede-rina/A. Quilico, C. Cardani, D. Ghiringhelli, M. Pavan//La Chimica e l'Industria. - 1961. — Vol. 43. — P. 1434.
- 48. Roth L.M Chemical defenses of Arthropods/L.M. Roth, T. Eisner//Ann. Rev. Entom. — 1962. — Vol. 7. — P. 107-130.
- 49. Stepanova O.S. Studio dell'estratto di Paederus caligatus/O.S. Stepanova, E.N. Alt'er, L.I. Viranova//Farm. Zhur. — 1961. — Vol. 16. — P. 56–58.
- 50. Tsuzuki K. Total synthesis of dl-pederamide/K. Tsuzuki//Tetrahedron Letters. 1976. \mathbb{N}^{0} 51. P. 4745-4748.
- 51. Vazquez D. The mechanisms of selectivity and action of protein synthesis inhibitors/D. Vazquez//Pure Appl. Chem. — 1973. — Vol. 35. — P. 355-370.
- 52. Vazquez D. Inhibitors of protein synthesis/D. Vazquez//FEBS Lett. — 1974. — Vol. 40. — P. 63-84.
- 53. Vazquez D. Inhibitors of protein biosynthesis/D. Vazquez. —
- Berlin: Springer-Verlag, 1979. 312 p.

 54. Zavattari E. Problemi di entomologia medica/E. Zavattari//Atti Accad. Naz. Ital. Entomol., Rendiconti. 1957. — Vol. 5. — P. 130–149.

УДК 504.03

ІСТОРІЯ ДОСЛІДЖЕННЯ ПЕДЕРИНУ ТА ЙОГО ТОКСИКОЛОГІЧНА ХАРАКТЕРИС-ТИКА: ОГЛЯД ЛІТЕРАТУРИ

Малий О. В., Олійник С. А., Лініченко С. В.

Резюме. В оглядовій статті викладено історію вивчення отрути ентомологічного походження педерину та наведено основні токсикологічні характеристики цієї речовини.

Ключові слова: педерин, історія дослідження, токсикологічна характеристика.

УДК 504.03

ИСТОРИЯ ИССЛЕДОВАНИЯ ПЕДЕРИНА И ЕГО ТОКСИКОЛОГИЧЕСКАЯ ХАРАКТЕ-РИСТИКА: ОБЗОР ЛИТЕРАТУРЫ

Малый О.В., Олейник С.А., Линиченко С.В.

Резюме. В обзорной статье изложена история изучения яда энтомологичного происхождения педерина, и приведены основные токсикологические характеристики этого вещества.

Ключевые слова: педерин, история исследования, токсикологическая характеристика.

UDC 504.03

The HISTORY of PEDERIN'S INVESTIGATIONS and its TOXICOLOGICAL HARACTERISTOCS: REVIEW

Maliy O. V., Oliynyk S. A., Linichenko S. V.

Summary. The history of investigation of entomological poison pederin and the main toxicological properties of this substance are described in a review.

Key words: pederin, history of investigation, toxicological properties.

Стаття надійшла 24.08.2010р.

УДК 616. 311: 616. 33/. 34] -002-092: 546.173:612. 015. 3 *Е.Г. Романенко, И.В. Ковач, А.И. Руденко, И.А. Кленина*

РОЛЬ МЕТАБОЛИТОВ ОКСИДА АЗОТА В ПАТОГЕНЕЗЕ ВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЙ ТКАНЕЙ ПОЛОСТИ РТА И ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА

Днепропетровская государственная медицинская академия (г. Днепропетровск) ГУ «Институт Гастроэнтерологии» АМН Украины (г. Днепропетровск)

Изучение регуляторного воздействии NO на состояние слизистой полости рта и роли метаболитов оксида азота в патогенезе воспалительных заболеваний пародонта проводится соответственно плану научно-исследовательской работы кафедры детской стоматологии Днепропетровской государственной медицинской академии «Разработка и усовершенствование методов диагностики патогенетического лечения и профилактики кариеса зубов, воспалительных заболеваний пародонта и зубочелюстных аномалий у детей» (№ ГР 0108U003038).

В последние годы значительно расширились представления о роли оксида азота (NO) и его метаболитов в различных физиологических и патологических процессах, в патогенезе различных заболеваний, в том числе полости рта и желудочно-кишечного тракта [1,3,5,7.9,12,14,19]. Доказана двойственная роль этого универсального эндогенного регулятора, способного оказывать как повреждающие, так и защитные воздействия на слизистую оболочку, которые во многом зависят от концентраций этого соединения. NO регулирует моторику пищеварительного тракта, желудочную секрецию, микроциркуляцию, стимулирует секрецию слизи и в физиологических условиях оказывает цитопротективное действие [8,14,20]. Очевидно, подобное действие метаболиты азота должны оказывать на ткани полости рта, однако, в литературе эти данные освещены недостаточно и требуют дополнительного изучения.

Полагают, что на ранних этапах развития воспаления в слизистых оболочках происходит повышение продукции NO, что является компенсаторным механизмом для обеспечения кровоснабжения и поддержания высокого уровня метаболизма в тканях за счет прямой вазодилатации. При прогрессировании заболевания происходит истощение источников синтеза NO (L-аргинин) и снижение его выработки, что приводит к повышению агрегационной способности тромбоцитов, снижению фибринолитической активности крови, нарушению регуляции сосудистого тонуса и развитию микротромбозов сосудистой системы. Негативное действие содержания NO начинает проявляться, когда его суммарная концентрация либо резко снижается, либо возрастает, приводя к функциональному и структурному повреждению органа [6].

Говоря о необходимости количественной оценки продукции NO у человека, следует отметить, что одним из подходов является определение концентрации основного продукта реакции, катализируемой