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The paper considers vector quantities sensors possessing output characteristics
described by quadrics equations. The vector coordinates can be found as the quadrics
intersection points. Measurement results are trustworthy if there is one intersection point. We
propose an algorithm detecting whether a set of three quadrics equations has the only
solution. Itsimplementation isintended for vector quantity smart sensors’ firmware.
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AJITOPUTM BU3HAYEHHA € IMHOCTI TOUYKU IIEPETUHY KBA/IPUK
JJIA IHTEJIEKTYAJIBHUX CEHCOPIB BEKTOPHUX BEJINYNH

Po3risinyTo mpo0ieMaTHKy BHKOPHCTAHHS CEHCOPiB BEKTOPHHX BeJWYHH, MOJIbOBI
XapaKTepUCTHUKU AKHX € (PYHKUisIMH, 1[0 ONMCYIOTh KBaapuku. KoopamHaTu BekTopa
BHUMIpIOBaHOI BEeJMYHUHH BU3HAYAKOTHCH SIK TOUYKHU MEpPeTHHY KBaApPUK. TakuX TOYOK MOKe
OyTH Jekijibka, 0 CTaBUTh Wil CYMHIB NPHIATHICTH Ppe3yJabTaTiB BUMipIOBaHHII.
3anponoHOBAHO AJTrOPUTM BHU3HAYEHHS €IWHOCTI PO3B'SI3KYy CHCTeMH TPbOX PIiBHAHb
KBaApUK. Peajizamiio ajgropurMy MoKHAa BHKOPHCTATH Y MiKpomporpamMHoMy 3a0e3medeHHi
iHTeJIeKTyaJIbHUX CEHCOPIiB BEKTOPHUX BEJTMYMH.

Kiro4uoBi ciioBa: ajaropurM, iHTeJeKTyaJbHi CeHCOPH, MIKPOKOHTPOJEP, JOKaJi3auis,
TOYKH MEPEeTHHY KBAAPUK, BEKTOPHA BeJIHYNHA, KUTbKICTh PO3B'sI3KiB.

Problem statement

Vector quantities sensors are an essential part of data acquisition for further processing this data.
New design solutions of such sensors have been constantly developed and investigated in order to improve
sensors sensibility (and thus measurement accuracy) and reducing sensors' size (and thus increasing the
density of mapping the field being measured) [1].

However, improvement of any sensors properties scarcely can be achieved without impairment of
other properties. Particularly, output characteristics of the elementary actuators comprising such a new-
generation sensor can depend on all the three coordinates of the vector being measured, their squares and
their pairwise products. As the result, there comes up a problem of fetching the sought vector coordinates
from the sensor’s output characteristics, causing the necessity to solve a set of non-linear equations [2].
Moreover, the output characteristics' coefficients may differ from one sensor specimen to another. This fact
complicates the calibration procedure of such sensors and their usage in practice, sincein general case a set
of non-linear equations can have multiple solutions. At best only one of these solutions coincides with the
“actual” coordinates of the vector being measured. In order to find out which solution is suitable, some
additional information is needed. It can be some auxiliary dependencies or information about the nature of
the sensor and the quantity being measured.

In order to reduce complexity of measurement results, a sensor can be fitted with a“brain” which is
typically a microcontroller. Thus sensors become “smart” [3-5]. Firmware of smart sensors, as of any
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embedded system, should meet more strict requirements than general-purpose computers’ software. These
requirements cover execution time (and thus computational complexity), consumed RAM and ROM and
reliability. An important part of processing the measured data is development of algorithms and firmware
for detection whether the set of equation defined by the output characteristics of a vector quantity sensor
has the only solution or not. If not measurement results should be discarded.

Recent research and publications analysis

The work [6] introduces a method for evaluating the applicability of the magnetic field measurement
results if they are obtained using a 3D-probe comprised of three sensors with output characteristics that
depend on all the components of a magnetic field and their squares. The work proposes simple analytic
dependencies that allow us to detect whether it's possible to measure a magnetic field with inaccuracy not
exceeding some defined value using a 3D-praobe with known output characteristics' coefficients. The same
analytic dependencies are applicable for evaluating measurement results obtained by other vector
quantities’ sensors if their output characteristics are described by the same function as the 3D-probe’s that
had been investigated. The physical meaning of the output characteristics coefficients may be left out of
the scope. However, the proposed analytic dependencies do not make alowances for the vector
coordinates pairwise products. Besides, they were deduced under a range of assumptions, all of them
related to “the worst possible case’. This means that if some measurement results fit these analytic
dependencies, they can be considered applicable, but otherwise it’stoo early to draw any conclusions about
the results’ applicability — additional investigations are required.

In cases when analytic solutions cannot be obtained the sought vector’s coordinates are to be found
as a solution for the set of non-linear equations that describe the output characteristics of a sensor using
numerical methods.

In [7] it was shown how roots separation influence the results of using library functions
implementing well-known numerical methods for finding exact solutions of sets of non-linear algebraic
equations. These investigations were carried out on ARM based microcontrollers. All the library functions
refine some approximate solutions that should be passed to the functions as their parameters. These
solutions can be given as intervals or point values. It was proved that library implementations of numerical
methods can fail to find all the solutions for an equation set or even find faulty solutions if they were given
too roughly formed approximate solutions. An algorithm of roots separation for a set of quadrics equations

was proposed in [7]. The algorithm has complexity O(ns) and ensures that all the regions that potentialy

contain the equation set’s solutions would be found. The algorithm’s disadvantage is that some of the
regions found as the result of its work actually do not contain any solutions for an equation set. In practice,
along with the problem of finding all the solutions for an equation set there exists a problem of finding out
how many solutions an equation set has. Particularly, as it was mentioned earlier, if an equation set
characterizing a sensor has more than one solution, the sensor cannot be used for measurements without
any additional data, since otherwise there are no means to know, which of the found solutionsis “ correct”.

In order to find out the amount of solutions for non-linear equations and equation sets the modern
meathematics applies Buchberger’s dgorithm that finds Grobner basis of the idedl in afinite number of steps[8-9].
The advantage of Buchberger’sagorithm isits universality —it’'s suitable for any nonlinear algebraic equation or an
equation set. However, Buchberger’s algorithm assumes symbolica calculations. There exist rather accurate
implementations of the dgorithm by numerica methods. However, they are susceptible to how accurate the results
of interim calculations are saved. Hence, in genera the idea of implementing Buchberger’s agorithm in firmware
contradicts with one of the main concepts of programming embedded systems — the less resource firmware
consumes, the better. Moreover, the results of dl the efforts related to implementation of Buchberger’s dgorithm
turn to be redundant in caseif dl that we need to know iswhether an equation set has the only solution or not.

Statement of purpose

This work is aimed at development of a smple, “quick” algorithm that detects whether a set of
quadrics’ equations has the only solution and is appropriate for implementation as a part of firmware for
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ARM based microcontrollers, taking into account restrictions of programming embedded systems. The
algorithm and firmware based on it are intended for making a conclusion upon the measurement results
obtained from vector quantity sensors with output characteristics described by quadrics' equations.

A method for detecting quadrics' inter section points
Let's suppose that a smart sensor of some vector quantity contains three actuators, output
characteristics of which can be described by quadrics’ equations:

a11x2 + a12y2 + a1322 +by1Xy + b1oXZ + by3yz + 11X+ C1pY + €132 —S1 =0
a21x2 + a22y2 + ay3z 24 Do1Xy +DooXZ +by3yz + Co1X +Copy + €32 - S, =0 @
a31x2 + a32y2 + a3322 +b31Xy +bgyxz + bgzyz + C31X+C3py + €332 —S3=0

here x, y and z are projections of the vector quantity being measured onto axes Ox, Oy and Oz
correspondingly of some Cartesian coordinate system assigned with the package of the sensor; ajj, bjj,
Cjj (i= E% N E’,) are known coefficients of the output characteristics of three actuators comprising the
sensor; S; arethesignalsread from the actuators.

We'll look for solutions of equation set (1) in some region R having the shape of a rectangular
parallelepiped comprised by all the points xe (X4, %], Y€ [ya.Yp], z€[z4.2p]. The region’s selection
can be caused by some available knowledge about the measurement range. In this case R is cube, since
each coordinate of the sought vector can have any value from the negative value of the vector’s length to
its positive value. One of approaches to define region R isto determine which type of 17 possible quadric
types each of our quadrics (1) belongs to, represent them in their canonical form and find out their
dimensions. Let's take L, M and N equidistant points in ranges [x5,xp], [Va.yp] and [z4.7p]
correspondingly. The first and the last points on each axis will be lower and upper boundaries of the
intervals. Thus the whole region R can be represented as a set of rectangular parallelepipeds

xe X, %], velyinvial, ze [zj ,zj+1] (k=1,L-1, i=LM -1, j=1LN-1) with vertices
coinciding with the nodes obtained by above mentioned division of ranges by equidistant points.

Let’s consider the first equation in equation set (1) at two fixed points y=yg and z=2z,:

a11x” +a1pY§ + 4328 +br1Xyg +bioXzg + bi3YoZo + 11X+ CrpYo + CraZg — S =0 @)

Equation (2) is a quadratic equation where x isunknown, thusit can have O, 1 or 2 real roots.

Let f denote the function that represents the left side of equation (2) at points x, (k=1,L—-1)and fg
denote the value of the function a xq. Hence the vaue of function f at some point xx (Xk = Xg +AXx-K),
where Ax isthe distance between the equidistant pointsin range [x, , X, |, can be expressed asfollows:

fiy = f(Xg + KAX)=ag1X8 + 2Kag AxXg + K 2ag1(AX)? +agoy8 + ag3z8 +by1XoYo + KbyAxyg +
+byoXgzg + KbyoAxzg +b13YgZg + C11Xg + KC11AX 4+ C10Yg +C13Z9 — 51 =
= fo + 2Kag1AXXg + K 2ag; (Ax)? + Kby Axyq + KbypAxzg + KegqAX
We are looking for such anumber K that f(xyx )=0, solving the quadratic equation:
a11(AX)2 K 2 + (2a13A%Xg + b1 AXYg + b1 AXZg + ¢ AX)K + fo =0 3)
The solution is expressed as:
Kip= (2871A%xq + by AXy g + byoAXZg + C11AX) £ /D @
2ay;(Ax)?
where D isthe discriminant of equation (3). Similar formulas can be obtained for the caseswhen y or z
are free variables and the couples of variables x and z or x and y are fixed correspondingly. The same
approach relates to the second and the third equations as well.
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Since K isthe number of arange that contains such a point x, that it is a solution for equation (3),
we'll round the found numbers to the nearest less natural numbers. Negative values and values exceeding
the amount of ranges L should be discarded for they do not belong to the region R where we try to find
the equation set’s solutions.

Since for fixed values of any couple of variables(x and y, x and z or y and z) the value of the

remaining third variable that turns equation (2) into equality, can be found from dependencies alike (4),
instead of considering combinations of X, y; and z; (k=1L, i=LM, j=LN) it's enough to
examine combinations of each couple of variables(x and y, x and zor y and z). Thusin contrast to the
algorithm introduced in [7] using an approach with solving quadratic equations we can reduce the
computational complexity from O(ns) to O(nz). This reduction would allow us to increase numbers L,
M and N in comparison with thevaluesof L, M and N “affordable” at the computational complexity
O(n3). This leads to reduction of distances Ax, Ay and Az between equidistant points on any of the

coordinate axes. If AV is the allowed inaccuracy of measuring the length of the sought vector V and
values Ax, Ay and Az are small enough to fit this inaccuracy, then the found intervals [xy, Xy,

[vi,Visal [zj,zj+1] (k=1,L-1, i=L,M -1, j=1 N —1) can be roughly considered the solution for

equation set (1). In this case there is no need in refinement of this solution by numerical methods
implemented in library functions suitable for firmware.

An algorithm for check if quadrics have the only inter section point
Step 1. To define some region R where we'll seek for quadrics’ intersection points. This region will

be a rectangular parallelepiped comprised by all the points x e (x4, Xy ], Y€ [ V., Yy |, 2€ (24,20 ].
Step 2. To set values L, M and N for division of theintervals [x,,xp |, [Va.Yp] ad [z24,2,] by

L, M and N equidistant points correspondingly. To evaluate the distances Ax, Ay and Az between the

neighbor points on three axes.

Step 3. To create an array F<i>_ZerogfM—1][N —1] of unsigned integer items for each equation in
equation set (1). Here we'll keep information about regions containing intersection points of the quadrics
(2). Thefirst index of each array is the index of an interval on coordinate axis Oy , the second index is the

index of an interval on coordinate axis Oz . The letter “i” in angular brackets stands for the index of an
equation in equation set (1). Thus, we'll have three arrays — F1 Zeros, F2 Zeros and F3_Zeros. At first all
the items of each array should be initialized by some constant number X_NA, which indicates that there
are no solutions for the corresponding equation of equation set (1) in the region represented by any specific
array item. If during algorithm’s execution this assumption about the absence of the solutions is denied,
X_NA will be replaced by the index of an interval on coordinate axis Ox where a solution was found.
Otherwise the value of an array’s item will till remain equal to X_NA. Since there can exist 0, 1 or 2
possible interval indices (due to the fact that there are 0, 1 or 2 possible solutions for any quadratic
equation), we can use the high-order byte and the low-order byte of any array’s item to store different
indices (under the assumption that the arrays type uses 16 bits and we do not need more than L =256).
More generally, we can use “high half atype width” and “low haf atype width” for storing indices. For
L =256 we can use uintl6 t. An aternative is to split data to six, not three arrays, however it's unlikely
that more than 256 equidistant points are needed due to the fact that the algorithm slows down in this case.

Step 4. For each combination of i and j,i.e for y; and Zj (i=],_M, j:L—N), using formulas (4)
we calculate such indices k; (k; =1,L —1) of intervals that point (xa + K - AX, Yj ,zj) is asolution for the

first equation in equation set (1). If these intervals are out of the range from 1 to L —1, we should discard
them. Otherwise we store them in the high-order byte and the low-order byte of item F1_Zerodi][j].
Similarly, we calculate and store the indices of the intervals containing the solutions for the second and the
third equationsin equation set (1), initems F2_Zerodi][j] and F3_Zerod[i][j].
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Step 5. For each combination of values k and i, i.e, for x, and y; (k=1L ,i=1M), using formulas

dike (4) we calculate such indices j; (j; :],N——l) of the intervals on coordinate axis Oz, that point
(X, Vi Z, + j| - Az) is asolution for the first equation in equation set (1). Then we check whether the found
numbers are within the allowed range. If not, they should be discarded. Otherwise each of the found values
becomes the second index of an array item with the first index i: F1_Zerodi][ j;]. The low-order byte of this
array item if it'sequa to X_NA should be assigned to k (theindex of the considered interval on coordinate axis
Ox). If the low-order byte contains a number different from X_NA, it means that during some previous
iteration such a combination of interva indices k, i and j has been found that the rectangular parallel epiped
defined by this indices combination contains a solution for the first equation of equation set (1). In this case we
should write number k into the high-order byte of F1_Zerodi][ j;] and not in thelow-order byte. Smilarly, we
should find the indices of intervals on axis Oz that form solutions for the second and the third equations in
equation set (1) and store the found valuesin F2_Zerosand F3_Zeros.

Step 6. For each combination of values k and j, i.e, for x and zj (k=1L,j=1N), using
formulas alike (4) we calculate such indices i (ij =1,M -1), that point (xy,y, +i - Ay, z; ) isasolution
for the first equation in equation set (1). The found values should be the first indices of array items with the
second index |, if they are inside their correct range. For forming items of F1_Nodes we apply the same

approach asin step 5. In the same way, we should fill arrays F2_Nodes and F3_Nodes with data on regions
containing solutions for the second and the third equations in equation set (1). As the result of the first six
steps of the algorithm for those regions containing solutions for each separate equation in equation set (1)
the items of three arrays, F1_Nodes, F2 Nodes and F3_Nodes, representing these regions will be
populated by values different from X_NA.

Step 7. For each combination of values i and j (i=1M —1,j:m—1),weshould compare items

F1 Nodedi][j], F2_Nodeqi][j] and F3_Nodeqi][j]. If the content | of the high-order byte or the low-
order-byte in F1_Nodeq[i][j] coincides with the content of the high-order byte or the low-order byte of
F2_Nodeg[i][j] and F3_Nodegi][j], then the rectangular parallelepiped comprised of al the points

xe X, xiaals velyin Vil ZG[ZJ',XJ'+1] (1=1,L-1,i=1,M -1, j=LN -1) potentially contains

solutions for equation set (1). However, it's possible that inside a paralelepiped there are pairwise
guadrics intersection points but still there is no a single point where al the quadrics intersect.
Nevertheless, we increase the counter for equation set’s solutions.

Step 8. If the counter for equation set’s solutions is greater than 1 and values Ax, Ay and Az are

small enough to fit the allowed inaccuracy of the vector quantity measurement, we can consider the found
rectangular parallelepipeds to be approximate solutions for equation set (1) and conclude that the obtained
measurement results are not applicable.

Step 9. If the counter for equation set’s solutionsiis greater than 1 and values Ax, Ay and Az do not

fit the allowed inaccuracy of the vector quantity measurement, we can refine the found approximate
solutions (i.e. found parallelepipeds that potentially contain quadrics intersection points) by available
library functions suitable for usage in firmware. The refined solutions are to be substituted into equation set
(2) to check whether they are actual solutions for the equation set. If for some pair of the refined solutions
the left side of equations (1) differs from their right side by a value within the alowed inaccuracy (nearly
equal to zero), we can conclude that the obtained measurement results are not applicable.

Step 10. If the counter for equation set’s solutions is not greater than 1 or there was no couple of the
refined solutions found during the previous step, we can conclude that additional investigations into the
equation set are required.

Step 11. End of agorithm.

In order to check whether it's reasonable to use the proposed algorithm as a part of firmware for
discarding inapplicable measurement results, the algorithm was implemented in Keil uVision for ARM-
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based stm32f407vg microcontroller included into evaluation boards stm32f4discovery. The agorithm's
implementation was verified using test cases comprised by 40 different sets of quadrics equations with
known solutions. Among the equation sets there were those containing the only intersection point, two
intersection points, 4 intersection points and no intersection points at all. Besides, we've checked the
situations where the existing intersection points resided out of the region where there have been sought for.

The algorithm detected all the solutionsin just about 40% of test cases. There was no occasion when
aregion not containing solutions was claimed to contain them. It was found that the algorithm works about
6 times faster than the algorithm in [7].

Conclusions

The work introduced a simple algorithm for detecting whether a set of quadrics' equations has
multiple solutions. The algorithm’s implementation can be used in firmware of smart sensors of vector
quantities. Such sensors can have output characteristics described by quadrics equations and the
coordinates of the vector being measured in this case should be found as a solution of the equation set (i.e.
quadrics’ intersection point). If there are several solutions, these measurement results are not applicable.

Verification of the algorithm implementation in stm32f407 microcontroller’s firmware has shown
low accuracy of finding the amount of solutions but quite acceptable time of execution. The very idea of
the algorithm explains its fast work and risk to “miss’ solutions. For this reason, if during execution of the
algorithm less than two different intersections points of quadrics were found, it's not enough information to
draw any conclusions about the actual amount of intersection points and, consequently, about applicability
of the measurement results. In this case additional study of the equation set is needed. On the other hand, if
two or more solutions were found, this fact proves inability to use the measurement results. Thus, the
introduced algorithm can be used as a “smoke test” in order to perform a sketchy review of the equation set
and is more reasonable for examining equation sets that actually have multiple solutions than the algorithm
introduced in [7] despite the latter ensures that no region containing the solutions is missed.
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