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The paper considers vector quantities sensors possessing output characteristics 

described by quadrics’ equations. The vector coordinates can be found as the quadrics’ 
intersection points. Measurement results are trustworthy if there is one intersection point. We 
propose an algorithm detecting whether a set of three quadrics’ equations has the only 
solution. Its implementation is intended for vector quantity smart sensors’ firmware. 
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АЛГОРИТМ ВИЗНАЧЕННЯ ЄДИНОСТІ ТОЧКИ ПЕРЕТИНУ КВАДРИК 
ДЛЯ ІНТЕЛЕКТУАЛЬНИХ СЕНСОРІВ ВЕКТОРНИХ ВЕЛИЧИН 
 

Розглянуто проблематику використання сенсорів векторних величин, польові  
характеристики  яких є функціями, що описують квадрики. Координати вектора 
вимірюваної величини визначаються як точки перетину квадрик. Таких точок може 
бути декілька, що ставить під сумнів придатність результатів вимірювання. 
Запропоновано алгоритм визначення єдиності розв’язку системи трьох рівнянь 
квадрик. Реалізацію алгоритму можна використати у мікропрограмному забезпеченні 
інтелектуальних сенсорів векторних величин. 

Ключові слова: алгоритм, інтелектуальні сенсори, мікроконтролер, локалізація, 
точки перетину квадрик, векторна величина, кількість розв'язків. 

 
Problem statement 

Vector quantities sensors are an essential part of data acquisition for further processing this data. 
New design solutions of such sensors have been constantly developed and investigated in order to improve 
sensors’ sensibility (and thus measurement accuracy) and reducing sensors’ size (and thus increasing the 
density of mapping the field being measured) [1]. 

However, improvement of any sensors’ properties scarcely can be achieved without impairment of 
other properties. Particularly, output characteristics of the elementary actuators comprising such a new-
generation sensor can depend on all the three coordinates of the vector being measured, their squares and 
their pairwise products. As the result, there comes up a problem of fetching the sought vector coordinates 
from the sensor’s output characteristics, causing the necessity to solve a set of non-linear equations [2]. 
Moreover, the output characteristics’ coefficients may differ from one sensor specimen to another. This fact 
complicates the calibration procedure of such sensors and their usage in practice, since in general case a set 
of non-linear equations can have multiple solutions. At best only one of these solutions coincides with the 
“actual” coordinates of the vector being measured. In order to find out which solution is suitable, some 
additional information is needed. It can be some auxiliary dependencies or information about the nature of 
the sensor and the quantity being measured. 

In order to reduce complexity of measurement results, a sensor can be fitted with a “brain” which is 
typically a microcontroller. Thus sensors become “smart” [3–5]. Firmware of smart sensors, as of any 
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embedded system, should meet more strict requirements than general-purpose computers’ software. These 
requirements cover execution time (and thus computational complexity), consumed RAM and ROM and 
reliability. An important part of processing the measured data is development of algorithms and firmware 
for detection whether the set of equation defined by the output characteristics of a vector quantity sensor 
has the only solution or not. If not measurement results should be discarded.  

 
Recent research and publications analysis 

The work [6] introduces a method for evaluating the applicability of the magnetic field measurement 
results if they are obtained using a 3D-probe comprised of three sensors with output characteristics that 
depend on all the components of a magnetic field and their squares. The work proposes simple analytic 
dependencies that allow us to detect whether it’s possible to measure a magnetic field with inaccuracy not 
exceeding some defined value using a 3D-probe with known output characteristics’ coefficients. The same 
analytic dependencies are applicable for evaluating measurement results obtained by other vector 
quantities’ sensors if their output characteristics are described by the same function as the 3D-probe’s that 
had been investigated. The physical meaning of the output characteristics’ coefficients may be left out of 
the scope. However, the proposed analytic dependencies do not make allowances for the vector 
coordinates’ pairwise products. Besides, they were deduced under a range of assumptions, all of them 
related to “the worst possible case”. This means that if some measurement results fit these analytic 
dependencies, they can be considered applicable, but otherwise it’s too early to draw any conclusions about 
the results’ applicability – additional investigations are required. 

In cases when analytic solutions cannot be obtained the sought vector’s coordinates are to be found 
as a solution for the set of non-linear equations that describe the output characteristics of a sensor using 
numerical methods. 

In [7] it was shown how roots separation influence the results of using library functions 
implementing well-known numerical methods for finding exact solutions of sets of non-linear algebraic 
equations. These investigations were carried out on ARM based microcontrollers. All the library functions 
refine some approximate solutions that should be passed to the functions as their parameters. These 
solutions can be given as intervals or point values. It was proved that library implementations of numerical 
methods can fail to find all the solutions for an equation set or even find faulty solutions if they were given 
too roughly formed approximate solutions. An algorithm of roots separation for a set of quadrics’ equations 

was proposed in [7]. The algorithm has complexity ( )3nO  and ensures that all the regions that potentially 

contain the equation set’s solutions would be found. The algorithm’s disadvantage is that some of the 
regions found as the result of its work actually do not contain any solutions for an equation set. In practice, 
along with the problem of finding all the solutions for an equation set there exists a problem of finding out 
how many solutions an equation set has. Particularly, as it was mentioned earlier, if an equation set 
characterizing a sensor has more than one solution, the sensor cannot be used for measurements without 
any additional data, since otherwise there are no means to know, which of the found solutions is “correct”. 

In order to find out the amount of solutions for non-linear equations and equation sets the modern 
mathematics applies Buchberger’s algorithm that finds Gröbner basis of the ideal in a finite number of steps [8–9]. 
The advantage of Buchberger’s algorithm is its universality – it’s suitable for any nonlinear algebraic equation or an 
equation set. However, Buchberger’s algorithm assumes symbolical calculations. There exist rather accurate 
implementations of the algorithm by numerical methods. However, they are susceptible to how accurate the results 
of interim calculations are saved. Hence, in general the idea of implementing Buchberger’s algorithm in firmware 
contradicts with one of the main concepts of programming embedded systems – the less resource firmware 
consumes, the better. Moreover, the results of all the efforts related to implementation of Buchberger’s algorithm 
turn to be redundant in case if all that we need to know is whether an equation set has the only solution or not. 

 
Statement of purpose 

This work is aimed at development of a simple, “quick” algorithm that detects whether a set of 
quadrics’ equations has the only solution and is appropriate for implementation as a part of firmware for 
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ARM based microcontrollers, taking into account restrictions of programming embedded systems. The 
algorithm and firmware based on it are intended for making a conclusion upon the measurement results 
obtained from vector quantity sensors with output characteristics described by quadrics’ equations.  

 
A method for detecting quadrics’ intersection points 

Let’s suppose that a smart sensor of some vector quantity contains three actuators, output 
characteristics of which can be described by quadrics’ equations: 
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here x , y  and z  are projections of the vector quantity being measured onto axes Ox , Oy  and Oz  

correspondingly of some Cartesian coordinate system assigned with the package of the sensor; ija , ijb ,  

ijc   ( 3,1=i , 3,1=j ) are known coefficients of the output characteristics of three actuators comprising the 

sensor;  iS   are the signals read from the actuators. 

We’ll look for solutions of equation set (1) in some region R  having the shape of a rectangular 
parallelepiped comprised by all the points [ ]ba xxx ,∈ , [ ]ba yyy ,∈ , [ ]ba zzz ,∈ . The region’s selection 

can be caused by some available knowledge about the measurement range. In this case R  is cube, since 
each coordinate of the sought vector can have any value from the negative value of the vector’s length to 
its positive value. One of approaches to define region R  is to determine which type of 17 possible quadric 
types each of our quadrics (1) belongs to, represent them in their canonical form and find out their 
dimensions. Let’s take L , M  and N  equidistant points in ranges [ ]ba xx , , [ ]ba yy ,  and [ ]ba zz ,  

correspondingly. The first and the last points on each axis will be lower and upper boundaries of the 
intervals. Thus the whole region R  can be represented as a set of rectangular parallelepipeds 

[ ]1, +∈ kk xxx , [ ]1, +∈ ii yyy , [ ]1, +∈ jj zzz  ( 1,1 −= Lk , 1,1 −= Mi , 1,1 −= Nj ) with vertices 

coinciding with the nodes obtained by above mentioned division of ranges by equidistant points. 
Let’s consider the first equation in equation set (1) at two fixed points  0yy =  and 0zz = : 
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Equation (2) is a quadratic equation where x  is unknown, thus it can have 0, 1 or 2 real roots. 

Let f  denote the function that represents the left side of equation (2) at points kx  ( 1,1 −= Lk ) and  0f  

denote the value of the function at 0x . Hence the value of function f  at some point Kx  ( KxxxK ⋅Δ+= 0 ), 

where xΔ  is the distance between the equidistant points in range [ ]ba xx , , can be expressed as follows: 
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We are looking for such a number K  that  ( ) 0=Kxf , solving the quadratic equation: 

( ) ( ) 02 011012011011
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The solution is expressed as: 
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where D  is the discriminant of equation (3). Similar formulas can be obtained for the cases when y  or z  

are free variables and the couples of variables x  and z  or x  and y  are fixed correspondingly. The same 

approach relates to the second and the third equations as well.  
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Since K  is the number of a range that contains such a point x , that it is a solution for equation (3), 
we’ll round the found numbers to the nearest less natural numbers. Negative values and values exceeding 
the amount of ranges L  should be discarded for they do not belong to the region R  where we try to find 
the equation set’s solutions. 

Since for fixed values of any couple of variables ( x  and y , x  and z  or y  and z ) the value of the 

remaining third variable that turns equation (2) into equality, can be found from dependencies alike (4), 

instead of considering combinations of kx , iy  and jz  ( Lk ,1= , Mi ,1= , Nj ,1= ) it’s enough to 

examine combinations of each couple of variables ( x  and y , x  and z or y  and z ). Thus in contrast to the 

algorithm introduced in [7] using an approach with solving quadratic equations we can reduce the 

computational complexity from ( )3nO  to ( )2nO . This reduction would allow us to increase numbers L , 

M  and N  in comparison with the values of L , M  and N  “affordable” at the computational complexity 

( )3nO . This leads to reduction of distances xΔ , yΔ  and zΔ  between equidistant points on any of the 

coordinate axes. If  VΔ  is the allowed inaccuracy of measuring the length of the sought vector V  and 
values xΔ , yΔ  and zΔ  are small enough to fit this inaccuracy, then the found intervals [ ]1, +kk xx , 

[ ]1, +ii yy , [ ]1, +jj zz  ( 1,1 −= Lk , 1,1 −= Mi , 1,1 −= Nj ) can be roughly considered the solution for 

equation set (1). In this case there is no need in refinement of this solution by numerical methods 
implemented in library functions suitable for firmware. 

 
An algorithm for check if quadrics have the only intersection point 

Step 1. To define some region R  where we’ll seek for quadrics’ intersection points. This region will 

be a rectangular parallelepiped comprised by all the points [ ]ba xxx ,∈ , [ ],a by y y∈ , [ ]ba zzz ,∈ .  

Step 2. To set values L , M  and N  for division of the intervals [ ]ba xx , , [ ]ba yy ,  and [ ]ba zz ,  by 

L , M  and N  equidistant points correspondingly. To evaluate the distances xΔ , yΔ  and zΔ  between the 

neighbor points on three axes. 
Step 3. To create an array F<i>_Zeros[M–1][N –1] of unsigned integer items for each equation in 

equation set (1). Here we’ll keep information about regions containing intersection points of the quadrics 
(1). The first index of each array is the index of an interval on coordinate axis Oy , the second index is the 

index of an interval on coordinate axis Oz . The letter “i” in angular brackets stands for the index of an 
equation in equation set (1). Thus, we’ll have three arrays – F1_Zeros, F2_Zeros and F3_Zeros. At first all 
the items of each array should be initialized by some constant number Х_NA, which indicates that there 
are no solutions for the corresponding equation of equation set (1) in the region represented by any specific 
array item. If during algorithm’s execution this assumption about the absence of the solutions is denied, 
X_NA will be replaced by the index of an interval on coordinate axis Ox  where a solution was found. 
Otherwise the value of an array’s item will still remain equal to X_NA. Since there can exist 0, 1 or 2 
possible interval indices (due to the fact that there are 0, 1 or 2 possible solutions for any quadratic 
equation), we can use the high-order byte and the low-order byte of any array’s item to store different 
indices (under the assumption that the arrays type uses 16 bits and we do not need more than 256=L ). 
More generally, we can use “high half a type width” and “low half a type width” for storing indices. For 

256=L  we can use uint16_t. An alternative is to split data to six, not three arrays, however it’s unlikely 
that more than 256 equidistant points are needed due to the fact that the algorithm slows down in this case. 

Step 4. For each combination of i  and j , i.e. for iy  and jz  ( Mi ,1= , Nj ,1= ), using formulas (4) 

we calculate such indices lk  ( 1,1 −= Lkl ) of intervals that point ( )jila zyxkx ,,Δ⋅+  is a solution for the 

first equation in equation set (1). If these intervals are out of the range from 1 to 1−L , we should discard 
them. Otherwise we store them in the high-order byte and the low-order byte of item F1_Zeros[i][j]. 
Similarly, we calculate and store the indices of the intervals containing the solutions for the second and the 
third equations in equation set (1), in items F2_Zeros[i][j] and F3_Zeros[i][j]. 
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Step 5. For each combination of values k  and i , i.e., for kx  and iy  ( Lk ,1= , Mi ,1= ), using formulas 

alike (4) we calculate such indices lj  ( 1,1 −= Njl ) of the intervals on coordinate axis Oz , that point 

( )zjzyx laik Δ⋅+,,  is a solution for the first equation in equation set (1). Then we check whether the found 

numbers are within the allowed range. If not, they should be discarded. Otherwise each of the found values 
becomes the second index of an array item with the first index i : F1_Zeros[i][ lj ]. The low-order byte of this 

array item if it’s equal to X_NA should be assigned to k  (the index of the considered interval on coordinate axis 
Ox ). If the low-order byte contains a number different from X_NA, it means that during some previous 
iteration such a combination of interval indices k , i  and j  has been found that the rectangular parallelepiped 

defined by this indices combination contains a solution for the first equation of equation set (1). In this case we 
should write number k  into the high-order byte of F1_Zeros[i][ lj ] and not in the low-order byte. Similarly, we 

should find the indices of intervals on axis Oz  that form solutions for the second and the third equations in 
equation set (1) and store the found values in F2_Zeros and F3_Zeros.  

Step 6. For each combination of values k  and j ,  i.e., for kx  and jz  ( Lk ,1= , Nj ,1= ), using 

formulas alike (4) we calculate such indices li  ( 1,1 −= Mil ), that point ( )jlak zyiyx ,, Δ⋅+  is a solution 

for the first equation in equation set (1). The found values should be the first indices of array items with the 
second index j , if they are inside their correct range. For forming items of F1_Nodes we apply the same 

approach as in step 5. In the same way, we should fill arrays F2_Nodes and F3_Nodes with data on regions 
containing solutions for the second and the third equations in equation set (1). As the result of the first six 
steps of the algorithm for those regions containing solutions for each separate equation in equation set (1) 
the items of three arrays, F1_Nodes, F2_Nodes and F3_Nodes, representing these regions will be 
populated by values different from X_NA. 

Step 7. For each combination of values i  and j  ( 1,1 −= Mi , 1,1 −= Nj ), we should compare items 

F1_Nodes[i][j], F2_Nodes[i][j] and F3_Nodes[i][j]. If the content l  of the high-order byte or the low-
order-byte in F1_Nodes[i][j]  coincides with the content of the high-order byte or the low-order byte of 
F2_Nodes[i][j] and F3_Nodes[i][j], then the rectangular parallelepiped comprised of all the points 

[ ]1, +∈ ll xxx , [ ]1, +∈ ii yyy , [ ]1, +∈ jj xzz  ( 1,1 −= Ll , 1,1 −= Mi , 1,1 −= Nj ) potentially contains 

solutions for equation set (1). However, it’s possible that inside a parallelepiped there are pairwise 
quadrics’ intersection points but still there is no a single point where all the quadrics intersect. 
Nevertheless, we increase the counter for equation set’s solutions. 

Step 8. If the counter for equation set’s solutions is greater than 1 and values xΔ , yΔ  and zΔ  are 

small enough to fit the allowed inaccuracy of the vector quantity measurement, we can consider the found 
rectangular parallelepipeds to be approximate solutions for equation set (1) and conclude that the obtained 
measurement results are not applicable. 

Step 9. If the counter for equation set’s solutions is greater than 1 and values xΔ , yΔ  and zΔ  do not 

fit the allowed inaccuracy of the vector quantity measurement, we can refine the found approximate 
solutions (i.e. found parallelepipeds that potentially contain quadrics’ intersection points) by available 
library functions suitable for usage in firmware. The refined solutions are to be substituted into equation set 
(1) to check whether they are actual solutions for the equation set. If for some pair of the refined solutions 
the left side of equations (1) differs from their right side by a value within the allowed inaccuracy (nearly 
equal to zero), we can conclude that the obtained measurement results are not applicable. 

Step 10. If the counter for equation set’s solutions is not greater than 1 or there was no couple of the 
refined solutions found during the previous step, we can conclude that additional investigations into the 
equation set are required.  

Step 11. End of algorithm. 
In order to check whether it’s reasonable to use the proposed algorithm as a part of firmware for 

discarding inapplicable measurement results, the algorithm was implemented in Keil uVision for ARM-
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based stm32f407vg microcontroller included into evaluation boards stm32f4discovery. The algorithm’s 
implementation was verified using test cases comprised by 40 different sets of quadrics’ equations with 
known solutions. Among the equation sets there were those containing the only intersection point, two 
intersection points, 4 intersection points and no intersection points at all. Besides, we’ve checked the 
situations where the existing intersection points resided out of the region where there have been sought for.  

The algorithm detected all the solutions in just about 40% of test cases. There was no occasion when 
a region not containing solutions was claimed to contain them. It was found that the algorithm works about 
6 times faster than the algorithm in [7]. 

 
Conclusions 

The work introduced a simple algorithm for detecting whether a set of quadrics’ equations has 
multiple solutions. The algorithm’s implementation can be used in firmware of smart sensors of vector 
quantities. Such sensors can have output characteristics described by quadrics’ equations and the 
coordinates of the vector being measured in this case should be found as a solution of the equation set (i.e. 
quadrics’ intersection point). If there are several solutions, these measurement results are not applicable.  

Verification of the algorithm implementation in stm32f407 microcontroller’s firmware has shown 
low accuracy of finding the amount of solutions but quite acceptable time of execution. The very idea of 
the algorithm explains its fast work and risk to “miss” solutions. For this reason, if during execution of the 
algorithm less than two different intersections points of quadrics were found, it’s not enough information to 
draw any conclusions about the actual amount of intersection points and, consequently, about applicability 
of the measurement results. In this case additional study of the equation set is needed. On the other hand, if 
two or more solutions were found, this fact proves inability to use the measurement results. Thus, the 
introduced algorithm can be used as a “smoke test” in order to perform a sketchy review of the equation set 
and is more reasonable for examining equation sets that actually have multiple solutions than the algorithm 
introduced in [7] despite the latter ensures that no region containing the solutions is missed. 
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